Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heping Cao is active.

Publication


Featured researches published by Heping Cao.


Expert Review of Proteomics | 2007

Phosphorylation site analysis of the anti-inflammatory and mRNA-destabilizing protein tristetraprolin

Heping Cao; Leesa J. Deterding; Perry J Blackshear

Tristetraprolin (TTP) is a member of the CCCH zinc finger proteins and is an anti-inflammatory protein. Mice deficient in TTP develop a profound inflammatory syndrome with erosive arthritis, autoimmunity and myeloid hyperplasia. TTP binds to mRNA AU-rich elements with high affinity for UUAUUUAUU nucleotides and causes destabilization of those mRNA molecules. TTP is phosphorylated extensively in vivo and is a substrate for multiple protein kinases in vitro. A number of approaches have been used to identify its phosphorylation sites. This article highlights the recent progress and different approaches utilized for the identification of phosphorylation sites in mammalian TTP. Important but limited results are obtained using traditional methods, including in vivo labeling, site-directed mutagenesis, phosphopeptide mapping and protein sequencing. Mass spectrometry (MS), including MALDI/MS, MALDI/MS/MS, liquid chromatography/MS/MS, immobilized metal ion affinity chromatography (IMAC)/MALDI/MS/MS and multidimensional protein identification technology has led the way in identifying TTP phosphorylation sites. The combination of these approaches has identified multiple phosphorylation sites in mammalian TTP, some of which are predicted by motif scanning to be phosphorylated by several protein kinases. This information should provide the molecular basis for future investigation of TTP’s regulatory functions in controlling proinflammatory cytokines.


Journal of Agricultural and Food Chemistry | 2012

Comparison of TaqMan and SYBR Green qPCR methods for quantitative gene expression in tung tree tissues.

Heping Cao; Jay M. Shockey

Quantitative real-time-PCR (qPCR) is widely used for gene expression analysis due to its large dynamic range, tremendous sensitivity, high sequence specificity, little to no postamplification processing, and sample throughput. TaqMan and SYBR Green qPCR are two frequently used methods. However, direct comparison of both methods using the same primers and biological samples is still limited. We compared both assays using seven RNAs from the seeds, leaves, and flowers of tung tree (Vernicia fordii), which produces high-value industrial oil. High-quality RNA were isolated from tung tissues, as indicated by a high rRNA ratio and RNA integrity number. qPCR primers and TaqMan probes were optimized. Under optimized conditions, both qPCR gave high correlation coefficiency and similar amplification efficiency, but TaqMan qPCR generated higher y-intercepts than SYBR Green qPCR, which overestimated the expression levels regardless of the genes and tissues tested. This is validated using well-known Dgat2 and Fadx gene expression in tung tissues. The results demonstrate that both assays are reliable for determining gene expression in tung tissues and that the TaqMan assay is more sensitive but generates lower calculated expression levels than the SYBR Green assay. This study suggests that any discussion of gene expression levels needs to be linked to which qPCR method is used in the analysis.


PLOS ONE | 2013

Developmental Regulation of Diacylglycerol Acyltransferase Family Gene Expression in Tung Tree Tissues

Heping Cao; Jay M. Shockey; K. Thomas Klasson; Dorselyn C. Chapital; Catherine Mason; Brian E. Scheffler

Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.


Journal of Agricultural and Food Chemistry | 2012

Glyceollins, Soy Isoflavone Phytoalexins, Improve Oral Glucose Disposal by Stimulating Glucose Uptake

Stephen M. Boue; Iryna A. Isakova; Matthew E. Burow; Heping Cao; Deepak Bhatnagar; Jeff G. Sarver; Kamlesh V. Shinde; Paul W. Erhardt; Mark L. Heiman

Soy glyceollins, induced during stress, have been shown to inhibit cancer cell growth in vitro and in vivo. In the present study, we used prediabetic rats to examine the glyceollins effect on blood glucose. During an oral glucose tolerance test (OGTT), the blood glucose excursion was significantly decreased in the rats treated with oral administration of either 30 or 90 mg/kg glyceollins. Plasma analysis demonstrated that glyceollins are absorbed after oral administration, and duration of exposure extends from 20 min to at least 4 h postadministration. Exposure of 3T3-L1 adipocytes to glyceollins significantly increased both insulin-stimulated and basal glucose uptake. Basal glucose uptake was increased 1.5-fold by exposure to 5 μM glyceollin in a dose-response manner. Coincubation with insulin significantly stimulated maximal glucose uptake above basal uptake levels and tended to increase glucose uptake beyond the levels of either stimulus alone. On a molecular level, polymerase chain reaction showed significantly increased levels of glucose transporter GLUT4 mRNA in 3T3-L1 adipocytes, especially when the cells were exposed to 5 μM glyceollins for 3 h in vitro. It correlated with elevated protein levels of GLUT4 detected in the 5 μM glyceollin-treated cells. Thus, the simulative effect of the glyceollins on adipocyte glucose uptake was attributed to up-regulation of glucose transporters. These findings indicate potential benefits of the glyceollins as an intervention in prediabetic conditions as well as a treatment for type 1 and type 2 diabetes by increasing both the insulin-mediated and the basal, insulin-independent, glucose uptake by adipocytes.


BMC Biotechnology | 2011

Expression of tung tree diacylglycerol acyltransferase 1 in E. coli

Heping Cao; Dorselyn C. Chapital; Jay M. Shockey; K. Thomas Klasson

BackgroundDiacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Database search has identified at least 59 DGAT1 sequences from 48 organisms, but the expression of any DGAT1 as a full-length protein in E. coli had not been reported because DGAT1s are integral membrane proteins and difficult to express and purify. The objective of this study was to establish a procedure for expressing full-length DGAT1 in E. coli.ResultsAn expression plasmid containing the open reading frame for tung tree (Vernicia fordii) DGAT1 fused to maltose binding protein and poly-histidine affinity tags was constructed and expressed in E. coli BL21(DE3). Immunoblotting showed that the recombinant DGAT1 (rDGAT1) was expressed, but mostly targeted to the membranes and insoluble fractions. Extensive degradation also occurred. Nonetheless, the fusion protein was partially purified from the soluble fraction by Ni-NTA and amylose resin affinity chromatography. Multiple proteins co-purified with DGAT1 fusion protein. These fractions appeared yellow in color and contained fatty acids. The rDGAT1 was solubilized from the insoluble fraction by seven detergents and urea, with SDS and Triton X-100 being the most effective detergents. The solubilized rDGAT1 was partially purified by Ni-NTA affinity chromatography. PreScission protease digestion confirmed the identity of rDGAT1 and showed extensive precipitation following Ni-NTA affinity purification.ConclusionsThis study reports the first procedure for expressing full-length DGAT1 from any species using a bacterial expression system. The results suggest that recombinant DGAT1 is degraded extensively from the carboxyl terminus and associated with other proteins, lipids, and membranes.


Journal of Agricultural and Food Chemistry | 2016

Antidiabetic Potential of Purple and Red Rice (Oryza sativa L.) Bran Extracts

Stephen M. Boue; Kim W. Daigle; Ming-Hsuan Chen; Heping Cao; Mark L. Heiman

Pigmented rice contains anthocyanins and proanthocyanidins that are concentrated in the bran layer. In this study, we determined the phenolic, flavonoid, anthocyanin, and proanthocyanidin content of five rice bran (1 brown, 2 red, and 2 purple) extracts. Each bran extract was evaluated for inhibitory effects on α-amylase and α-glucosidase activity, two key glucosidases required for starch digestion in humans. All purple and red bran extracts inhibited α-glucosidase activity, however only the red rice bran extracts inhibited α-amylase activity. Additionally, each bran extract was examined for their ability to stimulate glucose uptake in 3T3-L1 adipocytes, a key function in glucose homeostasis. Basal glucose uptake was increased between 2.3- and 2.7-fold by exposure to the red bran extracts, and between 1.9- and 3.1-fold by exposure to the purple bran extracts. In red rice bran, the highest enzyme inhibition and glucose uptake was observed with a proanthocyanidin-enriched fraction. Both IITA red bran and IAC purple bran increased expression of GLUT1 and GLUT4 mRNA, and genes encoding insulin-signaling pathway proteins.


Applied Microbiology and Biotechnology | 2012

Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2

Heping Cao; Dorselyn C. Chapital; O. D. Howard; Leesa J. Deterding; Catherine Mason; Jay M. Shockey; K. Thomas Klasson

Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.


PLOS ONE | 2014

Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera).

Yanling Zeng; Xiaofeng Tan; Lin Zhang; Nan Jiang; Heping Cao

Tea oil tree (Camellia oleifera, Co) provides a fine edible oil source in China. Tea oil from the seeds is very beneficial to human health. Fructose-1,6-bisphosphate aldolase (FBA) hydrolyzes fructose-1,6-bisphosphate into dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, two critical metabolites for oil biosynthesis. The objectives of this study were to identify FBA genes and investigate the relationship between FBA gene expression and oil content in developing seeds of tea oil tree. In this paper, four developmentally up-regulated CoFBA genes were identified in Camellia oleifera seeds based on the transcriptome from two seed developmental stages corresponding to the initiation and peak stages of lipid biosynthesis. The expression of CoFBA genes, along with three key oil biosynthesis genes CoACP, CoFAD2 and CoSAD were analyzed in seeds from eight developmental stages by real-time quantitative PCR. The oil content and fatty acid composition were also analyzed. The results showed that CoFBA and CoSAD mRNA levels were well-correlated with oil content whereas CoFAD2 gene expression levels were correlated with fatty acid composition in Camellia seeds. We propose that CoFBA and CoSAD are two important factors for determining tea oil yield because CoFBA gene controls the flux of key intermediates for oil biosynthesis and CoSAD gene controls the synthesis of oleic acid, which accounts for 80% of fatty acids in tea oil. These findings suggest that tea oil yield could be improved by enhanced expression of CoFBA and CoSAD genes in transgenic plants.


Plant Science | 2013

Molecular properties of the class III subfamily of acyl-coenyzme A binding proteins from tung tree (Vernicia fordii)

Steven Pastor; Kandan Sethumadhavan; Abul H. J. Ullah; Satinder K. Gidda; Heping Cao; Catherine Mason; Dorselyn C. Chapital; Brian E. Scheffler; Robert T. Mullen; John M. Dyer; Jay M. Shockey

Acyl-CoA binding proteins (ACBPs) have been identified in most branches of life, and play various roles in lipid metabolism, among other functions. Plants contain multiple classes of ACBP genes. The most diverse group is the class III proteins. Tung tree (Vernicia fordii) contains two such genes, designated VfACBP3A and VfACBP3B. The two proteins are significantly different in length and sequence. Analysis of tung ACBP3 genes revealed significant evolution, suggesting relatively ancient divergence of the two genes from a common ancestor. Phylogenetic comparisons of multiple plant class III proteins suggest that this group is the most evolutionarily dynamic class of ACBP. Both tung ACBP3 genes are expressed at similar levels in most tissues tested, but ACBP3A is stronger in leaves. Three-dimensional modeling predictions confirmed the presence of the conserved four α-helix bundle acyl-CoA binding (ACB); however, other regions of these proteins likely fold much differently. Acyl-CoA binding assays revealed different affinities for different acyl-CoAs, possibly contradicting the redundancy of function suggested by the gene expression studies. Subcellular targeting of transiently-expressed plant ACBP3 proteins contradicted earlier studies, and suggested that at least some class III ACBPs may be predominantly targeted to endoplasmic reticulum membranes, with little or no targeting to the apoplast.


Plant Molecular Biology | 2015

Development and analysis of a highly flexible multi-gene expression system for metabolic engineering in Arabidopsis seeds and other plant tissues

Jay M. Shockey; Catherine Mason; Matthew K. Gilbert; Heping Cao; Xiangjun Li; Edgar B. Cahoon; John M. Dyer

Production of novel value-added compounds in transgenic crops has become an increasingly viable approach in recent years. However, in many cases, product yield still falls short of the levels necessary for optimal profitability. Determination of the limiting factors is thus of supreme importance for the long-term viability of this approach. A significant challenge to most metabolic engineering projects is the need for strong coordinated co-expression of multiple transgenes. Strong constitutive promoters have been well-characterized during the >30xa0years since plant transformation techniques were developed. However, organ- or tissue-specific promoters are poorly characterized in many cases. Oilseeds are one such example. Reports spanning at least 20xa0years have described the use of certain seed-specific promoters to drive expression of individual transgenes. Multi-gene engineering strategies are often hampered by sub-optimal expression levels or improper tissue-specificity of particular promoters, or rely on the use of multiple copies of the same promoter, which can result in DNA instability or transgene silencing. We describe here a flexible system of plasmids that allows for expression of 1–7 genes per binary plasmid, and up to 18 genes altogether after multiple rounds of transformation or sexual crosses. This vector system includes six seed-specific promoters and two constitutive promoters. Effective constitutive and seed-specific RNA interference gene-suppression cloning vectors were also constructed for silencing of endogenous genes. Taken together, this molecular toolkit allows combinatorial cloning for multiple transgene expression in seeds, vegetative organs, or both simultaneously, while also providing the means to coordinately overexpress some genes while silencing others.

Collaboration


Dive into the Heping Cao's collaboration.

Top Co-Authors

Avatar

Jay M. Shockey

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Catherine Mason

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Kandan Sethumadhavan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Dorselyn C. Chapital

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

K. Thomas Klasson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

John M. Bland

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

John M. Dyer

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Leesa J. Deterding

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Abul H. J. Ullah

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Brian E. Scheffler

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge