Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heping Han is active.

Publication


Featured researches published by Heping Han.


Journal of Experimental Botany | 2010

AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth

Qin Yu; Heping Han; Martin M. Vila-Aiub; Stephen B. Powles

Twenty-two amino acid substitutions at seven conserved amino acid residues in the acetohydroxyacid synthase (AHAS) gene have been identified to date that confer target-site resistance to AHAS-inhibiting herbicides in biotypes of field-evolved resistant weed species. However, the effect of resistance mutations on AHAS functionality and plant growth has been investigated for only a very few mutations. This research investigates the effect of various AHAS resistance mutations in Lolium rigidum on AHAS functionality and plant growth. The enzyme kinetics of AHAS from five purified L. rigidum populations, each homozygous for the resistance mutations Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-197-Ser or Trp-574-Leu, were characterized and the pleiotropic effect of three mutations on plant growth was assessed via relative growth rate analysis. All these resistance mutations endowed a herbicide-resistant AHAS and most resulted in higher extractable AHAS activity, with no-to-minor changes in AHAS kinetics. The Pro-197-Arg mutation slightly (but significantly) increased the Km for pyruvate and remarkably increased sensitivity to feedback inhibition by branched chain amino acids. Whereas the Pro-197-Ser and Trp-574-Leu mutations exhibited no significant effects on plant growth, the Pro-197-Arg mutation resulted in lower growth rates. It is clear that, at least in L. rigidum, these five AHAS resistance mutations have no major impact on AHAS functionality and hence probably no plant resistance costs. These results, in part, explain why so many Pro-197 AHAS resistance mutations in AHAS have evolved and why the Pro-197-Ser and the Trp-574-Leu AHAS resistance mutations are frequently found in many weed species.


Planta | 2009

Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum.

Qin Yu; Ibrahim Abdallah; Heping Han; Mechelle J. Owen; Stephen B. Powles

This study investigates mechanisms of multiple resistance to glyphosate, acetyl-coenzyme A carboxylase (ACCase) and acetolactate synthase (ALS)-inhibiting herbicides in two Lolium rigidum populations from Australia. When treated with glyphosate, susceptible (S) plants accumulated 4- to 6-fold more shikimic acid than resistant (R) plants. The resistant plants did not have the known glyphosate resistance endowing mutation of 5-enolpyruvylshikimate-3 phosphate synthase (EPSPS) at Pro-106, nor was there over-expression of EPSPS in either of the R populations. However, [14C]-glyphosate translocation experiments showed that the R plants in both populations have altered glyphosate translocation patterns compared to the S plants. The R plants showed much less glyphosate translocation to untreated young leaves, but more to the treated leaf tip, than did the S plants. Sequencing of the carboxyl transferase domain of the plastidic ACCase gene revealed no resistance endowing amino acid substitutions in the two R populations, and the ALS in vitro inhibition assay demonstrated herbicide-sensitive ALS in the ALS R population (WALR70). By using the cytochrome P450 inhibitor malathion and amitrole with ALS and ACCase herbicides, respectively, we showed that malathion reverses chlorsulfuron resistance and amitrole reverses diclofop resistance in the R population examined. Therefore, we conclude that multiple glyphosate, ACCase and ALS herbicide resistance in the two R populations is due to the presence of distinct non-target site based resistance mechanisms for each herbicide. Glyphosate resistance is due to reduced rates of glyphosate translocation, and resistance to ACCase and ALS herbicides is likely due to enhanced herbicide metabolism involving different cytochrome P450 enzymes.


Pest Management Science | 2008

Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations

Qin Yu; Heping Han; Stephen B. Powles

BACKGROUND In the important grass weed Lolium rigidum (Gaud.), resistance to ALS-inhibiting herbicides has evolved widely in Australia. The authors have previously characterised the biochemical basis of ALS herbicide resistance in a number of L. rigidum biotypes and established that resistance can be due to a resistant ALS and/or enhanced herbicide metabolism. The purpose of this study was to identify specific resistance-endowing ALS gene mutation(s) in four resistant populations and to develop PCR-based molecular markers. RESULTS Six resistance-conferring ALS mutations were identified: Pro-197-Ala, Pro-197-Arg, Pro-197-Gln, Pro-197-Leu, Pro-197-Ser and Trp-574-Leu. All six mutations were found in one population (WLR1). Each Pro-197 mutation conferred resistance to the sulfonylurea (SU) herbicide sulfometuron, whereas the Trp-574-Leu mutation conferred resistance to both sulfometuron and the imidazolinone (IMS) herbicide imazapyr. A derived cleaved amplified polymorphic sequences (dCAPS) marker was developed for detecting resistance mutations at Pro-197. Furthermore, cleaved amplified polymorphic sequences (CAPS) markers were developed for detecting each of the six mutant resistant alleles. Using these markers, the authors revealed diverse ALS-resistant alleles and genotypes in these populations and related them directly to phenotypic resistance to ALS-inhibiting herbicides. CONCLUSION This study established the existence of a diversity of ALS gene mutations endowing resistance in L. rigidum populations: 1-6 different mutations were found within single populations. At field herbicide rates, resistance profiles were determined more by the specific mutation than by whether plants were homo- or heterozygous for the mutation.


Plant Physiology | 2015

Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in Eleusine indica Conferring High-Level Glyphosate Resistance

Qin Yu; Adam Jalaludin; Heping Han; Ming Chen; R. Douglas Sammons; Stephen B. Powles

Naturally evolved double mutants in 5-enolpyruvylshikimate-3-phosphate synthase mimic engineered glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthase in crops and confer high-level glyphosate resistance. Glyphosate is the most important and widely used herbicide in world agriculture. Intensive glyphosate selection has resulted in the widespread evolution of glyphosate-resistant weed populations, threatening the sustainability of this valuable once-in-a-century agrochemical. Field-evolved glyphosate resistance due to known resistance mechanisms is generally low to modest. Here, working with a highly glyphosate-resistant Eleusine indica population, we identified a double amino acid substitution (T102I + P106S [TIPS]) in the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene in glyphosate-resistant individuals. This TIPS mutation recreates the biotechnology-engineered commercial first generation glyphosate-tolerant EPSPS in corn (Zea mays) and now in other crops. In E. indica, the naturally evolved TIPS mutants are highly (more than 180-fold) resistant to glyphosate compared with the wild type and more resistant (more than 32-fold) than the previously known P106S mutants. The E. indica TIPS EPSPS showed very high-level (2,647-fold) in vitro resistance to glyphosate relative to the wild type and is more resistant (600-fold) than the P106S variant. The evolution of the TIPS mutation in crop fields under glyphosate selection is likely a sequential event, with the P106S mutation being selected first and fixed, followed by the T102I mutation to create the highly resistant TIPS EPSPS. The sequential evolution of the TIPS mutation endowing high-level glyphosate resistance is an important mechanism by which plants adapt to intense herbicide selection and a dramatic example of evolution in action.


Heredity | 2013

Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

Qin Yu; M. S. Ahmad-Hamdani; Heping Han; M.J. Christoffers; Stephen B. Powles

Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids.


Pest Management Science | 2012

A novel amino acid substitution Ala-122-Tyr in ALS confers high-level and broad resistance across ALS-inhibiting herbicides

Heping Han; Qin Yu; Edison Purba; Mei Li; Michael Walsh; Shane Friesen; Stephen B. Powles

BACKGROUND Wild radish, a problem weed worldwide, is a severe dicotyledonous weed in crops. In Australia, sustained reliance on ALS-inhibiting herbicides to control this species has led to the evolution of many resistant populations endowed by any of several ALS mutations. The molecular basis of ALS-inhibiting herbicide resistance in a novel resistant population was studied. RESULTS ALS gene sequencing revealed a previously unreported substitution of Tyr for Ala at amino acid position 122 in resistant individuals of a wild radish population (WARR30). A purified subpopulation individually homozygous for the Ala-122-Tyr mutation was generated and characterised in terms of its response to the different chemical classes of ALS-inhibiting herbicides. Whole-plant dose-response studies showed that the purified subpopulation was highly resistant to chlorsulfuron, metosulam and imazamox, with LD₅₀ or GR₅₀ R/S ratio of > 1024, > 512 and > 137 respectively. The resistance to imazypyr was found to be relatively moderate (but still substantial), with LD₅₀ and GR₅₀ R/S ratios of > 16 and > 7.8 respectively. In vitro ALS activity assays showed that Ala-122-Tyr ALS was highly resistant to all tested ALS-inhibiting herbicides. CONCLUSION The molecular basis of ALS-inhibiting herbicide resistance in wild radish population WARR30 was identified to be due to an Ala-122-Tyr mutation in the ALS gene. This is the first report of an amino acid substitution at Ala-122 in the plant ALS that confers high-level and broad-spectrum resistance to ALS-inhibiting herbicides, a remarkable contrast to the known mutation Ala-122-Thr endowing resistance to imidazolinone herbicide.


Planta | 2014

No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri

Martin M. Vila-Aiub; Sou S. Goh; Todd A. Gaines; Heping Han; Roberto Busi; Qin Yu; Stephen B. Powles

Abstract Amplification of the EPSPS gene has been previously identified as the glyphosate resistance mechanism in many populations of Amaranthus palmeri, a major weed pest in US agriculture. Here, we evaluate the effects of EPSPS gene amplification on both the level of glyphosate resistance and fitness cost of resistance. A. palmeri individuals resistant to glyphosate by expressing a wide range of EPSPS gene copy numbers were evaluated under competitive conditions in the presence or absence of glyphosate. Survival rates to glyphosate and fitness traits of plants under intra-specific competition were assessed. Plants with higher amplification of the EPSPS gene (53-fold) showed high levels of glyphosate resistance, whereas less amplification of the EPSPS gene (21-fold) endowed a lower level of glyphosate resistance. Without glyphosate but under competitive conditions, plants exhibiting up to 76-fold EPSPS gene amplification exhibited similar height, and biomass allocation to vegetative and reproductive organs, compared to glyphosate susceptible A. palmeri plants with no amplification of the EPSPS gene. Both the additive effects of EPSPS gene amplification on the level of glyphosate resistance and the lack of associated fitness costs are key factors contributing to EPSPS gene amplification as a widespread and important glyphosate resistance mechanism likely to become much more evident in weed plant species.


Plant Cell and Environment | 2013

Enhanced rates of herbicide metabolism in low herbicide‐dose selected resistant Lolium rigidum

Qin Yu; Heping Han; Greg Cawthray; Shaofang Wang; Stephen B. Powles

Lolium rigidum is an obligately cross-pollinated, genetically diverse species and an economically important herbicide resistance-prone weed. Our previous work has demonstrated that recurrent selection of initially susceptible L. rigidum populations with low herbicide rates results in rapid herbicide resistance evolution. Here we report on the mechanisms endowing low-dose-selected diclofop-methyl resistance in L. rigidum. Results showed that resistance was not due to target-site ACCase mutations or overproduction, or differential herbicide leaf uptake and translocation. The in vivo de-esterification of diclofop-methyl into phytotoxic diclofop acid was rapid and similar in resistant versus susceptible populations. However, further metabolism of diclofop acid into non-toxic metabolites was always faster in resistant plants than susceptible plants, resulting in up to 2.6-fold lower level of diclofop acid in resistant plants. This corresponded well with up to twofold higher level of diclofop acid metabolites in resistant plants. The major polar metabolites of diclofop acid chromatographically resembled those of wheat, a naturally tolerant species. Clearly, recurrent selection at reduced herbicide rates selected for non-target-site-based enhanced rates of herbicide metabolism, likely involving cytochrome P450 monooxygenases.


Plant and Cell Physiology | 2011

Transformation of β-Lycopene Cyclase Genes from Salicornia europaea and Arabidopsis Conferred Salt Tolerance in Arabidopsis and Tobacco

Xianyang Chen; Heping Han; Ping Jiang; Lingling Nie; Hexigeduleng Bao; Pengxiang Fan; Sulian Lv; Juanjuan Feng; Yinxin Li

Inhibition of lycopene cyclization decreased the salt tolerance of the euhalophyte Salicornia europaea L. We isolated a β-lycopene cyclase gene SeLCY from S. europaea and transformed it into Arabidopsis with stable expression. Transgenic Arabidopsis on post-germination exhibited enhanced tolerance to oxidative and salt stress. After 8 and 21 d recovery from 200 mM NaCl treatment, transgenic lines had a higher survival ratio than wild-type (WT) plants. Three-week-old transgenic plants treated with 200 mM NaCl showed better growth than the WT with higher photosystem activity and less H(2)O(2) accumulation. Determination of endogenous pigments of Arabidopsis treated with 200 mM NaCl for 0, 2 or 4 d demonstrated that the transgenic plants retained higher contents of carotenoids than the WT. Furthermore, to compare the difference between SeLCY and AtLCY from Arabidopsis, we used viral vector mediating ectopic expression of SeLCY and AtLCY in Nicotiana benthamiana. Although LCY genes transformation increased the salt tolerance in tobacco, there is no significant difference between SeLCY- and AtLCY-transformed plants. These findings indicate that SeLCY transgenic Arabidopsis improved salt tolerance by increasing synthesis of carotenoids, which impairs reactive oxygen species and protects the photosynthesis system under salt stress, and as a single gene, SeLCY functionally showed no advantage for salt tolerance improvement compared with AtLCY.


Pest Management Science | 2013

ALS herbicide resistance mutations in Raphanus raphanistrum: evaluation of pleiotropic effects on vegetative growth and ALS activity

Mei Li; Qin Yu; Heping Han; Martin M. Vila-Aiub; Stephen B. Powles

BACKGROUND Gene mutations that endow herbicide resistance may cause pleiotropic effects on plant ecology and physiology. This paper reports on the effect of a number of known and novel target-site resistance mutations of the ALS gene (Ala-122-Tyr, Pro-197-Ser, Asp-376-Glu or Trp-574-Leu) on vegetative growth traits of the weed Raphanus raphanistrum. RESULTS The results from a series of experiments have indicated that none of these ALS resistance mutations imposes negative pleiotropic effects on relative growth rate (RGR), photosynthesis and resource-competitive ability in R. raphanistrum plants. The absence of pleiotropic effects on plant growth occurs in spite of increased (Ala-122-Tyr, Pro-197-Ser, Asp-376-Glu) and decreased (Trp-574-Leu) extractable ALS activity. CONCLUSION The absence of detrimental pleiotropic effects on plant growth associated with the ALS target-site resistance mutations reported here is a contributing factor in resistance alleles being at relatively high frequencies in ALS-herbicide-unselected R. raphanistrum populations.

Collaboration


Dive into the Heping Han's collaboration.

Top Co-Authors

Avatar

Stephen B. Powles

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Qin Yu

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Busi

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Mechelle J. Owen

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Yinxin Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Todd A. Gaines

Colorado State University

View shared research outputs
Top Co-Authors

Avatar

Gregory R. Cawthray

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar

Jinyi Chen

University of Western Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge