Heping Shen
Australian National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Heping Shen.
ACS Applied Materials & Interfaces | 2016
Xingyue Zhao; Heping Shen; Ye Zhang; Xin Li; Xiaochong Zhao; Meiqian Tai; Jingfeng Li; Jianbao Li; Hong Lin
Although low-temperature, solution-processed zinc oxide (ZnO) has been widely adopted as the electron collection layer (ECL) in perovskite solar cells (PSCs) because of its simple synthesis and excellent electrical properties such as high charge mobility, the thermal stability of the perovskite films deposited atop ZnO layer remains as a major issue. Herein, we addressed this problem by employing aluminum-doped zinc oxide (AZO) as the ECL and obtained extraordinarily thermally stable perovskite layers. The improvement of the thermal stability was ascribed to diminish of the Lewis acid-base chemical reaction between perovskite and ECL. Notably, the outstanding transmittance and conductivity also render AZO layer as an ideal candidate for transparent conductive electrodes, which enables a simplified cell structure featuring glass/AZO/perovskite/Spiro-OMeTAD/Au. Optimization of the perovskite layer leads to an excellent and repeatable photovoltaic performance, with the champion cell exhibiting an open-circuit voltage (Voc) of 0.94 V, a short-circuit current (Jsc) of 20.2 mA cm(-2), a fill factor (FF) of 0.67, and an overall power conversion efficiency (PCE) of 12.6% under standard 1 sun illumination. It was also revealed by steady-state and time-resolved photoluminescence that the AZO/perovskite interface resulted in less quenching than that between perovskite and hole transport material.
Energy and Environmental Science | 2017
Jun Peng; Yiliang Wu; Wang Ye; Daniel Jacobs; Heping Shen; Xiao Fu; Yimao Wan; Nandi Wu; Chog Barugkin; Hieu T. Nguyen; Dingyong Zhong; Juntao Li; Teng Lu; Yun Liu; Mark N. Lockrey; Klaus Weber; Kylie R. Catchpole; Thomas P. White
Interfacial carrier recombination is one of the dominant loss mechanisms in high efficiency perovskite solar cells, and has also been linked to hysteresis and slow transient responses in these cells. Here we demonstrate an ultrathin passivation layer consisting of a PMMA:PCBM mixture that can effectively passivate defects at or near to the perovskite/TiO2 interface, significantly suppressing interfacial recombination. The passivation layer increases the open circuit voltage of mixed-cation perovskite cells by as much as 80 mV, with champion cells achieving Voc ∼ 1.18 V. As a result, we obtain efficient and stable perovskite solar cells with a steady-state PCE of 20.4% and negligible hysteresis over a large range of scan rates. In addition, we show that the passivated cells exhibit very fast current and voltage response times of less than 3 s under cyclic illumination. This new passivation approach addresses one of the key limitations of current perovskite cells, and paves the way to further efficiency gains through interface engineering.
IEEE Journal of Photovoltaics | 2016
Niraj N. Lal; Dale Grant; Daniel Jacobs; Peiting Zheng; Shakir Rahman; Heping Shen; Matthew Stocks; Andrew Blakers; Klaus Weber; Thomas P. White; Kylie R. Catchpole
A tandem configuration of perovskite and silicon solar cells is a promising way to achieve high-efficiency solar energy conversion at low cost. Four-terminal tandems, in which each cell is connected independently, avoid the need for current matching between the top and bottom cells, giving greater design flexibility. In a four-terminal tandem, the perovskite top cell requires two transparent contacts. Through detailed analysis of electrical and optical power losses, we identify optimum contact parameters and outline directions for the development of future transparent contacts for tandem cells. A semitransparent perovskite cell is fabricated with steady-state efficiency exceeding 12% and broadband near infrared transmittance of >80% using optimized sputtered indium tin oxide front and rear contacts. Our semitransparent cell exhibits much less hysteresis than opaque reference cells. A four-terminal perovskite on silicon tandem efficiency of more than 20% is achieved, and we identify clear pathways to exceed the current single silicon cell record of 25.6%.
ACS Applied Materials & Interfaces | 2016
Xuezeng Dai; Ye Zhang; Heping Shen; Qiang Luo; Xingyue Zhao; Jianbao Li; Hong Lin
We report herein perovskite solar cells using solution-processed silver nanowires (AgNWs) as transparent top electrode with markedly enhanced device performance, as well as stability by evaporating an ultrathin transparent Au (UTA) layer beneath the spin-coated AgNWs forming a composite transparent metallic electrode. The interlayer serves as a physical separation sandwiched in between the perovskite/hole transporting material (HTM) active layer and the halide-reactive AgNWs top-electrode to prevent undesired electrode degradation and simultaneously functions to significantly promote ohmic contact. The as-fabricated semitransparent PSCs feature a Voc of 0.96 V, a Jsc of 20.47 mA cm(-2), with an overall PCE of over 11% when measured with front illumination and a Voc of 0.92 V, a Jsc of 14.29 mA cm(-2), and an overall PCE of 7.53% with back illumination, corresponding to approximately 70% of the value under normal illumination conditions. The devices also demonstrate exceptional fabrication repeatability and air stability.
Science and Technology of Advanced Materials | 2014
Yoshiaki Oda; Heping Shen; Lin Zhao; Jianbao Li; Mitsumasa Iwamoto; Hong Lin
Abstract An environmentally friendly solid-state quantum dot sensitized solar cell (ss-QDSSC) was prepared by combining colloidal SnS QDs as the sensitizer and organic hole scavenger spiro-OMeTAD (2,2′,7,7′-tetrakis-(N,N-di-p-methoxyphenylamine)9,9′-spirobifluorene) as the solid-state electrolyte, and the energy alignment of SnS and TiO2 was investigated. The bandgap of colloidal SnS QDs increased with decreasing particle size from 14 to 4 nm due to an upshift of the conduction band and a downshift of the valence band. In TiO2/SnS heterojunctions, the conduction band minimum (CBM) difference between TiO2 and SnS was as large as ∼0.8 eV; this difference decreased with decreasing particle size, but was sufficient for electron injection from SnS nanoparticles of any size into TiO2. Meanwhile, the sensitizer regeneration driving force, that is, the difference between the valence band maximum (VBM) of SnS and the work function of the electrolyte, showed an opposite behaviour with the SnS size due to a downward shift of the SnS VB. Consequently, smaller SnS QDs should result in a more efficient charge transfer in heterojunctions, revealing the advantages of QDs vs larger particles as sensitizers. This prediction was confirmed by the improved photovoltaic performance of ss-QDSSCs modified with SnS nanoparticles, which peaked for 5–6 nm sized SnS nanoparticles due to the balance between electron injection and sunlight absorption.
Journal of Physical Chemistry Letters | 2017
Heping Shen; Daniel Jacobs; Yiliang Wu; Jun Peng; Xiaoming Wen; Xiao Fu; Siva Krishna Karuturi; Thomas P. White; Klaus Weber; Kylie R. Catchpole
J-V hysteresis in perovskite solar cells is known to be strongly dependent on many factors ranging from the cell structure to the preparation methods. Here we uncover one likely reason for such sensitivity by linking the stoichiometry in pure CH3NH3PbI3 (MAPbI3) perovskite cells with the character of their hysteresis behavior through the influence of internal band offsets. We present evidence indicating that in some cells the ion accumulation occurring at large forward biases causes a temporary and localized increase in recombination at the MAPbI3/TiO2 interface, leading to inverted hysteresis at fast scan rates. Numerical semiconductor models including ion accumulation are used to propose and analyze two possible origins for these localized recombination losses: one based on band bending and the other on an accumulation of ionic charge in the perovskite bulk.
Energy and Environmental Science | 2017
Yiliang Wu; Di Yan; Jun Peng; Yimao Wan; Sieu Pheng Phang; Heping Shen; Nandi Wu; Chog Barugkin; Xiao Fu; Sachin Surve; Dale Grant; Daniel Walter; Thomas P. White; Kylie R. Catchpole; Klaus Weber
Crystalline silicon (c-Si) solar cells featuring a high-temperature processed homojunction have dominated the photovoltaic industry for decades, with a global market share of around 93%. Integrating commercially available crystalline silicon solar cells with high-efficiency perovskite solar cells is a viable pathway to increase the power conversion efficiency, and hence achieve low levelized electricity costs for the photovoltaic systems. However, the fabrication process for this type of cell is challenging due to the many, and often conflicting, material processing requirements and limitations. Here, we present an innovative design for a monolithic perovskite/silicon tandem solar cell, featuring a mesoscopic perovskite top subcell and a high-temperature tolerant homojunction c-Si bottom subcell. The improved temperature tolerance of the c-Si bottom cell permits significantly increased flexibility in the design and fabrication of the perovskite cell. We demonstrate an efficiency of 22.5% (steady-state) and a Voc of 1.75 V on a 1 cm2 cell. The method developed in this work opens up new possibilities in designing, fabricating and commercialising low-cost high-efficiency perovskite/c-Si tandem solar cells.
ACS Applied Materials & Interfaces | 2017
Heping Shen; Yiliang Wu; Jun Peng; Xiao Fu; Chog Barugkin; Thomas P. White; Klaus Weber; Kylie R. Catchpole
With rapid progress in recent years, organohalide perovskite solar cells (PSC) are promising candidates for a new generation of highly efficient thin-film photovoltaic technologies, for which up-scaling is an essential step toward commercialization. In this work, we propose a modified two-step method to deposit the CH3NH3PbI3 (MAPbI3) perovskite film that improves the uniformity, photovoltaic performance, and repeatability of large-area perovskite solar cells. This method is based on the commonly used two-step method, with one additional process involving treating the perovskite film with concentrated methylammonium iodide (MAI) solution. This additional treatment is proved to be helpful for tailoring the residual PbI2 level to an optimal range that is favorable for both optical absorption and inhibition of recombination. Scanning electron microscopy and photoluminescence image analysis further reveal that, compared to the standard two-step and one-step methods, this method is very robust for achieving uniform and pinhole-free large-area films. This is validated by the photovoltaic performance of the prototype devices with an active area of 1 cm2, where we achieved the champion efficiency of ∼14.5% and an average efficiency of ∼13.5%, with excellent reproducibility.
Energy and Environmental Science | 2018
Heping Shen; Jun Peng; Daniel Jacobs; Nandi Wu; Junbo Gong; Yiliang Wu; Siva Krishna Karuturi; Xiao Fu; Klaus Weber; Xudong Xiao; Thomas P. White; Kylie R. Catchpole
A perovskite/CIGS tandem configuration is an attractive and viable approach to achieve an ultra-high efficiency and cost-effective all-thin-film solar cell. In this work, we developed a semi-transparent perovskite solar cell (PSC) with a maximum efficiency of 18.1% at a bandgap of ∼1.62 eV. Combining this cell in a mechanically stacked tandem configuration with a 16.5% CIGS cell results in a tandem efficiency of 23.9%. We also present a semi-transparent high bandgap (∼1.75 eV) PSC with a champion efficiency of 16.0% that enables a tandem efficiency of 23.4%. Optical simulation predicts that a perovskite/CIGS tandem efficiency of over 30% is feasible with a high bandgap perovskite top cell. The multiple-cation perovskite absorbers enabling high tandem efficiencies in this work are found to be remarkably less sensitive towards oxygen exposure compared to the widely used CH3NH3PbI3 (MAPbI3). By combining systematic compositional tuning of perovskite materials and the simultaneous probe of terminal open-circuit voltage (Voc) and Photoluminence (PL) of PSCs, it is deduced that an interaction between methylamonnium (MA) cations and oxygen molecules results in an increased surface recombination rate, and this is the main driver for oxygen-induced degradation. The extraordinary device performance and stability reported in this work pave the way for ultimately realizing the commercialization of all-thin-film photovoltaic technology.
ACS Applied Materials & Interfaces | 2017
Hemant Kumar Mulmudi; Yiliang Wu; Xiao Fu; Heping Shen; Jun Peng; Nandi Wu; Hieu T. Nguyen; Daniel Macdonald; Mark N. Lockrey; Thomas P. White; Klaus Weber; Kylie R. Catchpole
Perovskite material with a bandgap of 1.7-1.8 eV is highly desirable for the top cell in a tandem configuration with a lower bandgap bottom cell, such as a silicon cell. This can be achieved by alloying iodide and bromide anions, but light-induced phase-segregation phenomena are often observed in perovskite films of this kind, with implications for solar cell efficiency. Here, we investigate light-induced phase segregation inside quadruple-cation perovskite material in a complete cell structure and find that the magnitude of this phenomenon is dependent on the operating condition of the solar cell. Under short-circuit and even maximum power point conditions, phase segregation is found to be negligible compared to the magnitude of segregation under open-circuit conditions. In accordance with the finding, perovskite cells based on quadruple-cation perovskite with 1.73 eV bandgap retain 94% of the original efficiency after 12 h operation at the maximum power point, while the cell only retains 82% of the original efficiency after 12 h operation at the open-circuit condition. This result highlights the need to have standard methods including light/dark and bias condition for testing the stability of perovskite solar cells. Additionally, phase segregation is observed when the cell was forward biased at 1.2 V in the dark, which indicates that photoexcitation is not required to induce phase segregation.