Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herbert E. Covington is active.

Publication


Featured researches published by Herbert E. Covington.


Neuron | 2007

Histone Deacetylase 5 Epigenetically Controls Behavioral Adaptations to Chronic Emotional Stimuli

William Renthal; Ian Maze; Vaishnav Krishnan; Herbert E. Covington; Guanghua Xiao; Arvind Kumar; Scott J. Russo; Ami Graham; Nadia M. Tsankova; Tod E. Kippin; Kerry A. Kerstetter; Rachael L. Neve; Stephen J. Haggarty; Timothy A. McKinsey; Rhonda Bassel-Duby; Eric N. Olson; Eric J. Nestler

Previous work has identified alterations in histone acetylation in animal models of drug addiction and depression. However, the mechanisms which integrate drugs and stress with changes in chromatin structure remain unclear. Here, we identify the activity-dependent class II histone deacetylase, HDAC5, as a central integrator of these stimuli with changes in chromatin structure and gene expression. Chronic, but not acute, exposure to cocaine or stress decreases HDAC5 function in the nucleus accumbens (NAc), a major brain reward region, which allows for increased histone acetylation and transcription of HDAC5 target genes. This regulation is behaviorally important, as loss of HDAC5 causes hypersensitive responses to chronic, not acute, cocaine or stress. These findings suggest that proper balance of histone acetylation is a crucial factor in the saliency of a given stimulus and that disruption of this balance is involved in the transition from an acute adaptive response to a chronic psychiatric illness.


Science | 2010

Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward.

Mary Kay Lobo; Herbert E. Covington; Dipesh Chaudhury; Allyson K. Friedman; HaoSheng Sun; Diane Damez-Werno; David M. Dietz; Samir Zaman; Ja Wook Koo; Pamela J. Kennedy; Ezekiell Mouzon; Murtaza Mogri; Rachael L. Neve; Karl Deisseroth; Ming-Hu Han; Eric J. Nestler

BDNF, Dopamine, and Cocaine Reward The nucleus accumbens plays a crucial role in mediating the rewarding effects of drugs of abuse. Different subpopulations of nucleus accumbens projection neurons exhibit balanced but antagonistic influences on their downstream outputs and behaviors. However, their roles in regulating reward behaviors remains unclear. Lobo et al. (p. 385) evaluated the roles of the two subtypes of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, in cocaine reward. Deleting TrkB, the receptor for brain-derived neurotrophic factor, selectively in each cell type, and selectively controlling the firing of each cell type using optogenetic techniques allowed for confirmation that D1- and D2-containing neurons produced opposite effects on cocaine reward. Selective manipulation of neuron subtypes produces opposite effects on behavioral responses to cocaine. The nucleus accumbens is a key mediator of cocaine reward, but the distinct roles of the two subpopulations of nucleus accumbens projection neurons, those expressing dopamine D1 versus D2 receptors, are poorly understood. We show that deletion of TrkB, the brain-derived neurotrophic factor (BDNF) receptor, selectively from D1+ or D2+ neurons oppositely affects cocaine reward. Because loss of TrkB in D2+ neurons increases their neuronal excitability, we next used optogenetic tools to control selectively the firing rate of D1+ and D2+ nucleus accumbens neurons and studied consequent effects on cocaine reward. Activation of D2+ neurons, mimicking the loss of TrkB, suppresses cocaine reward, with opposite effects induced by activation of D1+ neurons. These results provide insight into the molecular control of D1+ and D2+ neuronal activity as well as the circuit-level contribution of these cell types to cocaine reward.


Science | 2010

Essential Role of the Histone Methyltransferase G9a in Cocaine-induced Plasticity

Ian Maze; Herbert E. Covington; David M. Dietz; Quincey LaPlant; William Renthal; Scott J. Russo; Max Mechanic; Ezekiell Mouzon; Rachael L. Neve; Stephen J. Haggarty; Yanhua Ren; Srihari C. Sampath; Yasmin L. Hurd; Paul Greengard; Alexander Tarakhovsky; Anne Schaefer; Eric J. Nestler

Cocaine Addiction and Histone Methylation Long-lasting behavioral syndromes associated with chronic cocaine exposure may result from dysregulation of the global transcriptional machinery. Maze et al. (p. 213) observed that histone lysine methylation in the nucleus accumbens plays a critical role in mediating the regulation of gene expression in response to repeated cocaine self-administration. Chronic cocaine was linked to overall reductions in dimethylation of lysine 9 of histone 3 (H3K9) in this brain region. Repressing H3K9 after chronic cocaine administration facilitated reward-related changes in behavior. The authors identifed the methyltransferase G9a as an essential mediator and an important regulator of dendritic spine plasticity. Downregulation of G9a was linked to the transcription factor ΔFosB. Cocaine suppression of histone methylation in the nucleus accumbens mediates the drug’s ability to enhance reward. Cocaine-induced alterations in gene expression cause changes in neuronal morphology and behavior that may underlie cocaine addiction. In mice, we identified an essential role for histone 3 lysine 9 (H3K9) dimethylation and the lysine dimethyltransferase G9a in cocaine-induced structural and behavioral plasticity. Repeated cocaine administration reduced global levels of H3K9 dimethylation in the nucleus accumbens. This reduction in histone methylation was mediated through the repression of G9a in this brain region, which was regulated by the cocaine-induced transcription factor ∆FosB. Using conditional mutagenesis and viral-mediated gene transfer, we found that G9a down-regulation increased the dendritic spine plasticity of nucleus accumbens neurons and enhanced the preference for cocaine, thereby establishing a crucial role for histone methylation in the long-term actions of cocaine.


The Journal of Neuroscience | 2009

Antidepressant Actions of Histone Deacetylase Inhibitors

Herbert E. Covington; Ian Maze; Quincey LaPlant; Vincent Vialou; Yoshinori N. Ohnishi; Olivier Berton; Dan M. Fass; William Renthal; A.J. Rush; Emma Y. Wu; Subroto Ghose; Vaishnav Krishnan; Scott J. Russo; Carol A. Tamminga; Stephen J. Haggarty; Eric J. Nestler

Persistent symptoms of depression suggest the involvement of stable molecular adaptations in brain, which may be reflected at the level of chromatin remodeling. We find that chronic social defeat stress in mice causes a transient decrease, followed by a persistent increase, in levels of acetylated histone H3 in the nucleus accumbens, an important limbic brain region. This persistent increase in H3 acetylation is associated with decreased levels of histone deacetylase 2 (HDAC2) in the nucleus accumbens. Similar effects were observed in the nucleus accumbens of depressed humans studied postmortem. These changes in H3 acetylation and HDAC2 expression mediate long-lasting positive neuronal adaptations, since infusion of HDAC inhibitors into the nucleus accumbens, which increases histone acetylation, exerts robust antidepressant-like effects in the social defeat paradigm and other behavioral assays. HDAC inhibitor [N-(2-aminophenyl)-4-[N-(pyridine-3-ylmethoxy-carbonyl)aminomethyl]benzamide (MS-275)] infusion also reverses the effects of chronic defeat stress on global patterns of gene expression in the nucleus accumbens, as determined by microarray analysis, with striking similarities to the effects of the standard antidepressant fluoxetine. Stress-regulated genes whose expression is normalized selectively by MS-275 may provide promising targets for the future development of novel antidepressant treatments. Together, these findings provide new insight into the underlying molecular mechanisms of depression and antidepressant action, and support the antidepressant potential of HDAC inhibitors and perhaps other agents that act at the level of chromatin structure.


Nature Neuroscience | 2010

Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens

Quincey LaPlant; Vincent Vialou; Herbert E. Covington; Dani Dumitriu; Jian Feng; Brandon L. Warren; Ian Maze; David M. Dietz; Emily L. Watts; Sergio D. Iñiguez; Ja Wook Koo; Ezekiell Mouzon; William Renthal; Fiona Hollis; Hui Wang; Michele A. Noonan; Yanhua Ren; Amelia J. Eisch; Carlos A. Bolaños; Mohamed Kabbaj; Guanghua Xiao; Rachael L. Neve; Yasmin L. Hurd; Ronald S. Oosting; Gouping Fan; John H. Morrison; Eric J. Nestler

Despite abundant expression of DNA methyltransferases (Dnmts) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We found that Dnmt3a expression was regulated in mouse nucleus accumbens (NAc) by chronic cocaine use and chronic social defeat stress. Moreover, NAc-specific manipulations that block DNA methylation potentiated cocaine reward and exerted antidepressant-like effects, whereas NAc-specific Dnmt3a overexpression attenuated cocaine reward and was pro-depressant. On a cellular level, we found that chronic cocaine use selectively increased thin dendritic spines on NAc neurons and that DNA methylation was both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.


Nature Protocols | 2011

A standardized protocol for repeated social defeat stress in mice

Sam A. Golden; Herbert E. Covington; Olivier Berton; Scott J. Russo

A major impediment to novel drug development has been the paucity of animal models that accurately reflect symptoms of affective disorders. In animal models, prolonged social stress has proven to be useful in understanding the molecular mechanisms underlying affective-like disorders. When considering experimental approaches for studying depression, social defeat stress, in particular, has been shown to have excellent etiological, predictive, discriminative and face validity. Described here is a protocol whereby C57BL/6J mice that are repeatedly subjected to bouts of social defeat by a larger and aggressive CD-1 mouse results in the development of a clear depressive-like syndrome, characterized by enduring deficits in social interactions. Specifically, the protocol consists of three important stages, beginning with the selection of aggressive CD-1 mice, followed by agonistic social confrontations between the CD-1 and C57BL/6J mice, and concluding with the confirmation of social avoidance in subordinate C57BL/6J mice. The automated detection of social avoidance allows a marked increase in throughput, reproducibility and quantitative analysis. This protocol is highly adaptable, but in its most common form it requires 3–4 weeks for completion.


Nature Neuroscience | 2010

[Delta]FosB in brain reward circuits mediates resilience to stress and antidepressant responses

Vincent Vialou; Alfred J. Robison; Quincey LaPlant; Herbert E. Covington; David M. Dietz; Yoshinori N. Ohnishi; Ezekiell Mouzon; A.J. Rush; Emily L. Watts; Deanna L. Wallace; Sergio D. Iñiguez; Yoko H. Ohnishi; Michel A. Steiner; Brandon L. Warren; Vaishnav Krishnan; Carlos A. Bolaños; Rachael L. Neve; Subroto Ghose; Olivier Berton; Carol A. Tamminga; Eric J. Nestler

In contrast with the many studies of stress effects on the brain, relatively little is known about the molecular mechanisms of resilience, the ability of some individuals to escape the deleterious effects of stress. We found that the transcription factor ΔFosB mediates an essential mechanism of resilience in mice. Induction of ΔFosB in the nucleus accumbens, an important brain reward-associated region, in response to chronic social defeat stress was both necessary and sufficient for resilience. ΔFosB induction was also required for the standard antidepressant fluoxetine to reverse behavioral pathology induced by social defeat. ΔFosB produced these effects through induction of the GluR2 AMPA glutamate receptor subunit, which decreased the responsiveness of nucleus accumbens neurons to glutamate, and through other synaptic proteins. Together, these findings establish a previously unknown molecular pathway underlying both resilience and antidepressant action.


Neuron | 2009

Genome-wide Analysis of Chromatin Regulation by Cocaine Reveals a Role for Sirtuins

William Renthal; Arvind Kumar; Guanghua Xiao; Matthew Wilkinson; Herbert E. Covington; Ian Maze; Devanjan Sikder; Alfred J. Robison; Quincey LaPlant; David M. Dietz; Scott J. Russo; Vincent Vialou; Sumana Chakravarty; Thomas Kodadek; Ashley Stack; Mohammed Kabbaj; Eric J. Nestler

Changes in gene expression contribute to the long-lasting regulation of the brains reward circuitry seen in drug addiction; however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings reveal several interesting principles of gene regulation by cocaine and of the role of DeltaFosB and CREB, two prominent cocaine-induced transcription factors, in this brain region. The findings also provide comprehensive insight into the molecular pathways regulated by cocaine-including a new role for sirtuins (Sirt1 and Sirt2)-which are induced in the nucleus accumbens by cocaine and, in turn, dramatically enhance the behavioral effects of the drug.


The Journal of Neuroscience | 2010

Mesolimbic Dopamine Neurons in the Brain Reward Circuit Mediate Susceptibility to Social Defeat and Antidepressant Action

Jun-Li Cao; Herbert E. Covington; Allyson K. Friedman; Matthew Wilkinson; Jessica J. Walsh; Donald C. Cooper; Eric J. Nestler; Ming-Hu Han

We previously reported that the activity of mesolimbic dopamine neurons of the ventral tegmental area (VTA) is a key determinant of behavioral susceptibility vs resilience to chronic social defeat stress. However, this was based solely on ex vivo measurements, and the in vivo firing properties of VTA dopamine neurons in susceptible and resilient mice, as well as the effects of antidepressant treatments, remain completely unknown. Here, we show that chronic (10 d) social defeat stress significantly increased the in vivo spontaneous firing rates and bursting events in susceptible mice but not in the resilient subgroup. Both the firing rates and bursting events were significantly negatively correlated with social avoidance behavior, a key behavioral abnormality induced by chronic social defeat stress. Moreover, the increased firing rates, bursting events, and avoidance behavior in susceptible mice were completely reversed by chronic (2 week), but not acute (single dose), treatments with the antidepressant medication fluoxetine (20 mg/kg). Chronic social defeat stress increased hyperpolarization-activated cation current (Ih) in VTA dopamine neurons, an effect that was also normalized by chronic treatment with fluoxetine. As well, local infusion of Ih inhibitors ZD7288 (0.1 μg) or DK-AH 269 (0.6 μg) into the VTA exerted antidepressant-like behavioral effects. Together, these data suggest that the firing patterns of mesolimbic dopamine neurons in vivo mediate an individuals responses to chronic stress and antidepressant action.


Psychopharmacology | 2001

Repeated social-defeat stress, cocaine or morphine

Herbert E. Covington; Klaus A. Miczek

Four episodes of social-defeat stress engendered a significant increase in the frequency of walking and rearing behavior following the 1.0 mg/kg amphetamine challenge (F1,67=58.60; P<0.001; Fig. 1A, and F1,67=10.23, P=0.002, respectively). Four episodes of social-defeat stress significantly enhanced the frequency of walking behavior in response to cocaine (10.0 mg/kg and 7.5 mg/kg) challenge relative to non-stressed controls (F1,63=26.52, P<0.001; Fig. 1C and F1,63=7.64, P=0.008; Fig. 1B, respectively).

Collaboration


Dive into the Herbert E. Covington's collaboration.

Top Co-Authors

Avatar

Eric J. Nestler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachael L. Neve

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ian Maze

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Olivier Berton

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Scott J. Russo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Vincent Vialou

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Quincey LaPlant

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Vaishnav Krishnan

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge