Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herbert E. Klei is active.

Publication


Featured researches published by Herbert E. Klei.


Cancer Research | 2006

The Structure of Dasatinib (BMS-354825) Bound to Activated ABL Kinase Domain Elucidates Its Inhibitory Activity against Imatinib-Resistant ABL Mutants

John S. Tokarski; John A. Newitt; Chieh Ying J. Chang; Janet D. Cheng; Michael Wittekind; Susan E. Kiefer; Kevin Kish; Francis Y. Lee; Robert Borzillerri; Louis J. Lombardo; Dianlin Xie; Yaqun Zhang; Herbert E. Klei

Chronic myeloid leukemia (CML) is caused by the constitutively activated tyrosine kinase breakpoint cluster (BCR)-ABL. Current frontline therapy for CML is imatinib, an inhibitor of BCR-ABL. Although imatinib has a high rate of clinical success in early phase CML, treatment resistance is problematic, particularly in later stages of the disease, and is frequently mediated by mutations in BCR-ABL. Dasatinib (BMS-354825) is a multitargeted tyrosine kinase inhibitor that targets oncogenic pathways and is a more potent inhibitor than imatinib against wild-type BCR-ABL. It has also shown preclinical activity against all but one of the imatinib-resistant BCR-ABL mutants tested to date. Analysis of the crystal structure of dasatinib-bound ABL kinase suggests that the increased binding affinity of dasatinib over imatinib is at least partially due to its ability to recognize multiple states of BCR-ABL. The structure also provides an explanation for the activity of dasatinib against imatinib-resistant BCR-ABL mutants.


Biochemical Journal | 2011

Structural Basis for Carm1 Inhibition by Indole and Pyrazole Inhibitors

John S. Sack; Sandrine Thieffine; Tiziano Bandiera; Marina Fasolini; Gerald J. Duke; Lata Jayaraman; Kevin Kish; Herbert E. Klei; Ashok V. Purandare; Pamela Rosettani; Sonia Troiani; Dianlin Xie; Jay Aaron Bertrand

CARM1 (co-activator-associated arginine methyltransferase 1) is a PRMT (protein arginine N-methyltransferase) family member that catalyses the transfer of methyl groups from SAM (S-adenosylmethionine) to the side chain of specific arginine residues of substrate proteins. This post-translational modification of proteins regulates a variety of transcriptional events and other cellular processes. Moreover, CARM1 is a potential oncological target due to its multiple roles in transcription activation by nuclear hormone receptors and other transcription factors such as p53. Here, we present crystal structures of the CARM1 catalytic domain in complex with cofactors [SAH (S-adenosyl-L-homocysteine) or SNF (sinefungin)] and indole or pyazole inhibitors. Analysis of the structures reveals that the inhibitors bind in the arginine-binding cavity and the surrounding pocket that exists at the interface between the N- and C-terminal domains. In addition, we show using ITC (isothermal titration calorimetry) that the inhibitors bind to the CARM1 catalytic domain only in the presence of the cofactor SAH. Furthermore, sequence differences for select residues that interact with the inhibitors may be responsible for the CARM1 selectivity against PRMT1 and PRMT3. Together, the structural and biophysical information should aid in the design of both potent and specific inhibitors of CARM1.


Journal of Medicinal Chemistry | 2014

The Discovery of Asunaprevir (BMS-650032), An Orally Efficacious NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection

Paul Michael Scola; Li-Qiang Sun; Alan Xiangdong Wang; Jie Chen; Ny Sin; Brian Lee Venables; Sing-Yuen Sit; Yan Chen; Anthony J. Cocuzza; Donna M. Bilder; Stanley V. D’Andrea; Barbara Zheng; Piyasena Hewawasam; Yong Tu; Jacques Friborg; Paul Falk; Dennis Hernandez; Steven Levine; Chaoqun Chen; Fei Yu; Amy K. Sheaffer; Guangzhi Zhai; Diana Barry; Jay O. Knipe; Yong-Hae Han; Richard Schartman; Maria Donoso; Kathy Mosure; Michael Sinz; Tatyana Zvyaga

The discovery of asunaprevir (BMS-650032, 24) is described. This tripeptidic acylsulfonamide inhibitor of the NS3/4A enzyme is currently in phase III clinical trials for the treatment of hepatitis C virus infection. The discovery of 24 was enabled by employing an isolated rabbit heart model to screen for the cardiovascular (CV) liabilities (changes to HR and SNRT) that were responsible for the discontinuation of an earlier lead from this chemical series, BMS-605339 (1), from clinical trials. The structure-activity relationships (SARs) developed with respect to CV effects established that small structural changes to the P2* subsite of the molecule had a significant impact on the CV profile of a given compound. The antiviral activity, preclincial PK profile, and toxicology studies in rat and dog supported clinical development of BMS-650032 (24).


Protein Science | 2008

Involvement of DPP‐IV catalytic residues in enzyme–saxagliptin complex formation

William Metzler; Joseph Yanchunas; Carolyn A. Weigelt; Kevin Kish; Herbert E. Klei; Dianlin Xie; Yaqun Zhang; Martin J. Corbett; James Tamura; Bin He; Lawrence G. Hamann; Mark S. Kirby; Jovita Marcinkeviciene

The inhibition of DPP‐IV by saxagliptin has been proposed to occur through formation of a covalent but reversible complex. To evaluate further the mechanism of inhibition, we determined the X‐ray crystal structure of the DPP‐IV:saxagliptin complex. This structure reveals covalent attachment between S630 and the inhibitor nitrile carbon (C–O distance <1.3 Å). To investigate whether this serine addition is assisted by the catalytic His‐Asp dyad, we generated two mutants of DPP‐IV, S630A and H740Q, and assayed them for ability to bind inhibitor. DPP‐IVH740Q bound saxagliptin with an ∼1000‐fold reduction in affinity relative to DPP‐IVWT, while DPP‐IVS630A showed no evidence for binding inhibitor. An analog of saxagliptin lacking the nitrile group showed unchanged binding properties to the both mutant proteins, highlighting the essential role S630 and H740 play in covalent bond formation between S630 and saxagliptin. Further supporting mechanism‐based inhibition by saxagliptin, NMR spectra of enzyme–saxagliptin complexes revealed the presence of three downfield resonances with low fractionation factors characteristic of short and strong hydrogen bonds (SSHB). Comparison of the NMR spectra of various wild‐type and mutant DPP‐IV:ligand complexes enabled assignment of a resonance at ∼14 ppm to H740. Two additional DPP‐IV mutants, Y547F and Y547Q, generated to probe potential stabilization of the enzyme–inhibitor complex by this residue, did not show any differences in inhibitor binding either by ITC or NMR. Together with the previously published enzymatic data, the structural and binding data presented here strongly support a histidine‐assisted covalent bond formation between S630 hydroxyl oxygen and the nitrile group of saxagliptin.


Acta Crystallographica Section D-biological Crystallography | 2006

Automated ligand fitting by core-fragment fitting and extension into density

Thomas C. Terwilliger; Herbert E. Klei; Paul D. Adams; Nigel W. Moriarty; Judith D. Cohn

An automated ligand-fitting procedure has been developed and tested on 9327 ligands and (F o − F c)exp(iϕc) difference density from macromolecular structures in the Protein Data Bank.


Journal of Applied Crystallography | 1999

Implementation of a six-dimensional search using the AMoRe translation function for difficult molecular-replacement problems

Steven Sheriff; Herbert E. Klei; Malcolm E. Davis

A six-dimensional molecular-replacement procedure has been implemented using Perl scripts and the CCP4 version of the translation function of the molecular-replacement program AMoRe. These tools have allowed the structure determination of CTLA-4 monomer from NMR-derived coordinates, and of a potential complex of MurD with a substrate. In both cases other molecular-replacement programs, X-PLOR and AMoRe, when used in a conventional manner, either failed or did not yield an obvious solution.


PLOS ONE | 2013

High resolution crystal structure of human β-glucuronidase reveals structural basis of lysosome targeting.

Md. Imtaiyaz Hassan; Abdul Waheed; Jeffery H. Grubb; Herbert E. Klei; Sergey Korolev; William S. Sly

Human β-glucuronidase (GUS) cleaves β-D-glucuronic acid residues from the non-reducing termini of glycosaminoglycan and its deficiency leads to mucopolysaccharidosis type VII (MPSVII). Here we report a high resolution crystal structure of human GUS at 1.7 Å resolution and present an extensive analysis of the structural features, unifying recent findings in the field of lysosome targeting and glycosyl hydrolases. The structure revealed several new details including a new glycan chain at Asn272, in addition to that previously observed at Asn173, and coordination of the glycan chain at Asn173 with Lys197 of the lysosomal targeting motif which is essential for phosphotransferase recognition. Analysis of the high resolution structure not only provided new insights into the structural basis for lysosomal targeting but showed significant differences between human GUS, which is medically important in its own right, and E. coli GUS, which can be selectively inhibited in the human gut to prevent prodrug activation and is also widely used as a reporter gene by plant biologists. Despite these differences, both human and E. coli GUS share a high structure homology in all three domains with most of the glycosyl hydrolases, suggesting that they all evolved from a common ancestral gene.


Journal of Medicinal Chemistry | 2008

Design, structure-activity relationships, X-ray crystal structure, and energetic contributions of a critical P1 pharmacophore: 3-chloroindole-7-yl-based factor Xa inhibitors.

Yan Shi; Doree Sitkoff; Jing Zhang; Herbert E. Klei; Kevin Kish; Eddie C.-K. Liu; Karen S. Hartl; Steve M. Seiler; Ming Chang; Christine Huang; Sonia Youssef; Thomas E. Steinbacher; William A. Schumacher; Nyeemah Grazier; Andrew T. Pudzianowski; Atsu Apedo; Lorell Discenza; Joseph Yanchunas; Philip D. Stein; Karnail S. Atwal

An indole-based P1 moiety was incorporated into a previously established factor Xa inhibitor series. The indole group was designed to hydrogen-bond with the carbonyl of Gly218, while its 3-methyl or 3-chloro substituent was intended to interact with Tyr228. These interactions were subsequently observed in the X-ray crystal structure of compound 18. SAR studies led to the identification of compound 20 as the most potent FXa inhibitor in this series (IC(50) = 2.4 nM, EC(2xPT) = 1.2 microM). An in-depth energetic analysis suggests that the increased binding energy of 3-chloroindole-versus 3-methylindole-containing compounds in this series is due primarily to (a) the more hydrophobic nature of chloro- versus methyl-containing compounds and (b) an increased interaction of 3-chloroindole versus 3-methylindole with Gly218 backbone. The stronger hydrophobicity of chloro- versus methyl-substituted aromatics may partly explain the general preference for chloro- versus methyl-substituted P1 groups in FXa, which extends beyond the current series.


Journal of Medicinal Chemistry | 2010

Discovery of 6-(Aminomethyl)-5-(2,4-dichlorophenyl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamides as Potent, Selective Dipeptidyl Peptidase-4 (DPP4) Inhibitors.

Wei Meng; Robert Paul Brigance; Hannguang J. Chao; Aberra Fura; Thomas Harrity; Jovita Marcinkeviciene; Stephen P. O'connor; James Tamura; Dianlin Xie; Yaqun Zhang; Herbert E. Klei; Kevin Kish; Carolyn Weigelt; Huji Turdi; Aiying Wang; Robert Zahler; Mark S. Kirby; Lawrence G. Hamann

Continued structure-activity relationship (SAR) exploration within our previously disclosed azolopyrimidine containing dipeptidyl peptidase-4 (DPP4) inhibitors led us to focus on an imidazolopyrimidine series in particular. Further study revealed that by replacing the aryl substitution on the imidazole ring with a more polar carboxylic ester or amide, these compounds displayed not only increased DPP4 binding activity but also significantly reduced human ether-a-go-go related gene (hERG) and sodium channel inhibitory activities. Additional incremental adjustment of polarity led to permeable molecules which exhibited favorable pharmacokinetic (PK) profiles in preclinical animal species. The active site binding mode of these compounds was determined by X-ray crystallography as exemplified by amide 24c. A subsequent lead molecule from this series, (+)-6-(aminomethyl)-5-(2,4-dichlorophenyl)-N-(1-ethyl-1H-pyrazol-5-yl)-7-methylimidazo[1,2-a]pyrimidine-2-carboxamide (24s), emerged as a potent, selective DPP4 inhibitor that displayed excellent PK profiles and in vivo efficacy in ob/ob mice.


Journal of Virology | 2007

X-Ray Crystal Structures of Human Immunodeficiency Virus Type 1 Protease Mutants Complexed with Atazanavir

Herbert E. Klei; Kevin Kish; Pin-Fang M. Lin; Qi Guo; Jacques Friborg; Ronald E. Rose; Yaqun Zhang; Valentina Goldfarb; David R. Langley; Michael Wittekind; Steven Sheriff

ABSTRACT Atazanavir, which is marketed as REYATAZ, is the first human immunodeficiency virus type 1 (HIV-1) protease inhibitor approved for once-daily administration. As previously reported, atazanavir offers improved inhibitory profiles against several common variants of HIV-1 protease over those of the other peptidomimetic inhibitors currently on the market. This work describes the X-ray crystal structures of complexes of atazanavir with two HIV-1 protease variants, namely, (i) an enzyme optimized for resistance to autolysis and oxidation, referred to as the cleavage-resistant mutant (CRM); and (ii) the M46I/V82F/I84V/L90M mutant of the CRM enzyme, which is resistant to all approved HIV-1 protease inhibitors, referred to as the inhibitor-resistant mutant. In these two complexes, atazanavir adopts distinct bound conformations in response to the V82F substitution, which may explain why this substitution, at least in isolation, has yet to be selected in vitro or in the clinic. Because of its nearly symmetrical chemical structure, atazanavir is able to make several analogous contacts with each monomer of the biological dimer.

Collaboration


Dive into the Herbert E. Klei's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Yu

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge