Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Herbert Nar is active.

Publication


Featured researches published by Herbert Nar.


Blood | 2013

A specific antidote for dabigatran: functional and structural characterization

F Schiele; J. van Ryn; Keith Canada; C Newsome; E Sepulveda; John Edward Park; Herbert Nar; Tobias Litzenburger

Dabigatran etexilate is a direct thrombin inhibitor and used widely as an anticoagulant for the prevention of stroke in patients with atrial fibrillation. However, anticoagulation therapy can be associated with an increased risk of bleeding. Here, we present data on the identification, humanization, and in vitro pharmacology of an antidote for dabigatran (aDabi-Fab). The X-ray crystal structure of dabigatran in complex with the antidote reveals many structural similarities of dabigatran recognition compared with thrombin. By a tighter network of interactions, the antidote achieves an affinity for dabigatran that is ~350 times stronger than its affinity for thrombin. Despite the structural similarities in the mode of dabigatran binding, the antidote does not bind known thrombin substrates and has no activity in coagulation tests or platelet aggregation. In addition we demonstrate that the antidote rapidly reversed the anticoagulant activity of dabigatran in vivo in a rat model of anticoagulation. This is the first report of a specific antidote for a next-generation anticoagulant that may become a valuable tool in patients who require emergency procedures.


Structure | 2001

Crystal Structure of Bisphosphorylated IGF-1 Receptor Kinase: Insight into Domain Movements upon Kinase Activation

Alexander Pautsch; Andreas Zoephel; Horst Ahorn; Walter Spevak; Rudolf Hauptmann; Herbert Nar

BACKGROUNDnThe insulin-like growth-factor-1 (IGF-1) receptor, which is widely expressed in cells that have undergone oncogenic transformation, is emerging as a novel target in cancer therapy. IGF-1-induced receptor activation results in autophosphorylation of cytoplasmic kinase domains and enhances their capability to phosphorylate downstream substrates. Structures of the homologous insulin receptor kinase (IRK) exist in an open, unphosphorylated form and a closed, trisphosphorylated form.nnnRESULTSnWe have determined the 2.1 A crystal structure of the IGF-1 receptor protein tyrosine kinase domain phosphorylated at two tyrosine residues within the activation loop (IGF-1RK2P) and bound to an ATP analog. The ligand is not in a conformation compatible with phosphoryl transfer, and the activation loop is partially disordered. Compared to the homologous insulin receptor kinase, IGF-1RK2P is trapped in a half-closed, previously unobserved conformation. Observed domain movements can be dissected into two orthogonal rotational components.nnnCONCLUSIONSnConformational changes upon kinase activation are triggered by the degree of phosphorylation and are crucially dependent on the conformation of the proximal end of the kinase activation loop. This IGF-1RK structure will provide a molecular basis for the design of selective antioncogenic therapeutic agents.


Acta Crystallographica Section D-biological Crystallography | 2007

Structure of a Cbs-Domain Pair from the Regulatory Gamma1 Subunit of Human Ampk in Complex with AMP and Zmp.

Philip J. Day; Andrew Sharff; Lina Parra; Anne Cleasby; Mark A. Williams; Stefan Hörer; Herbert Nar; Norbert Redemann; Ian J. Tickle; Jeff Yon

AMP-activated kinase (AMPK) is central to sensing energy status in eukaryotic cells via binding of AMP and ATP to CBS (cystathionine beta-synthase) domains in the regulatory gamma subunit. The structure of a CBS-domain pair from human AMPK gamma1 in complex with the physiological activator AMP and the pharmacological activator ZMP (AICAR) is presented.


Structure | 2001

Structural basis for inhibition promiscuity of dual specific thrombin and factor Xa blood coagulation inhibitors.

Herbert Nar; Margit Bauer; Angela Schmid; Jean-Marie Stassen; Wolfgang Wienen; Henning Priepke; Iris Kauffmann; Uwe Ries; Norbert Hauel

BACKGROUNDnA major current focus of pharmaceutical research is the development of selective inhibitors of the blood coagulation enzymes thrombin or factor Xa to be used as orally bioavailable anticoagulant drugs in thromboembolic disorders and in the prevention of venous and arterial thrombosis. Simultaneous direct inhibition of thrombin and factor Xa by synthetic proteinase inhibitors as a novel approach to antithrombotic therapy could result in potent anticoagulants with improved pharmacological properties.nnnRESULTSnThe binding mode of such dual specific inhibitors of thrombin and factor Xa was determined for the first time by comparative crystallography using human alpha-thrombin, human des-Gla (1--44) factor Xa and bovine trypsin as the ligand receptors. The benzamidine-based inhibitors utilize two different conformations for the interaction with thrombin and factor Xa/trypsin, which are evoked by the steric requirements of the topologically different S2 subsites of the enzymes. Compared to the unliganded forms of the proteinases, ligand binding induces conformational adjustments of thrombin and factor Xa active site residues indicative of a pronounced induced fit mechanism.nnnCONCLUSIONnThe structural data reveal the molecular basis for a desired unselective inhibition of the two key components of the blood coagulation cascade. The 4-(1-methyl-benzimidazole-2-yl)-methylamino-benzamidine moieties of the inhibitors are able to fill both the small solvent accessible as well as the larger hydrophobic S2 pockets of factor Xa and thrombin, respectively. Distal fragments of the inhibitors are identified which fit into both the cation hole/aromatic box of factor Xa and the hydrophobic aryl binding site of thrombin. Thus, binding constants in the medium-to-low nanomolar range are obtained against both enzymes.


Trends in Pharmacological Sciences | 2012

The role of structural information in the discovery of direct thrombin and factor Xa inhibitors

Herbert Nar

The quest for novel medications to treat thromboembolic disorders such as venous thrombosis, pulmonary embolism and stroke received a boost when the 3D structures of two major players in the blood coagulation cascade were determined in 1989 and 1993. Structure-guided design of inhibitors of thrombin (factor IIa, fIIa) and factor Xa (fXa) eventually led to the discovery of potent, selective, efficacious, orally active and safe compounds that proved successful in clinical studies. In 2008, the direct thrombin inhibitor dabigatran etexilate developed by Boehringer Ingelheim became the first novel antithrombotic molecular entity to enter the market in 50 years. Additional compounds targeting factor Xa were subsequently granted marketing authorization or are in late-stage clinical studies. In this review, I use selected case studies to describe the discovery of novel fIIa and fXa inhibitors, with a particular emphasis on the pre-eminent role that structural information played in this process.


Journal of Pharmaceutical Sciences | 2000

Structural characterization of three crystalline modifications of telmisartan by single crystal and high-resolution X-ray powder diffraction

Robert E. Dinnebier; Peter Sieger; Herbert Nar; Kenneth Shankland; William I. F. David

Three crystalline modifications (A, B, and C) of 4-[[2-n-propyl-4-methyl-6-(1-methyl-benzimidazol-2-yl)benzi midazol-1-yl]methyl]biphenyl-2-carboxylic acid (INN name, telmisartan) have been detected and their crystal structures have been determined by single-crystal X-ray diffraction (pseudopolymorph C) and the method of simulated annealing from high-resolution X-ray powder diffraction data (polymorphs A and B). The compound is of interest because of its use as an angiotensin II receptor antagonist. Polymorph A crystallizes in space group P2(I)/c, Z = 4, with unit cell parameters a = 18.7798(3), b = 18.1043(2), and c = 8.00578(7) A, beta = 97.066(1) degrees, and V = 2701.31 A(3). Polymorph B crystallizes in space group P2(I)/a, Z = 4, with unit cell parameters a = 16.0646(5), b = 13.0909(3), and c = 13.3231(3) A, beta = 99.402(1) degrees, and V = 2764.2(1) A(3). The solvated form C crystallizes in space group C2/c, Z = 8, with unit cell parameters a = 30.990(5), b = 13.130(3), and c = 16.381(3) A, beta = 95.02(2) degrees, and V = 6639(2) A(3). For the structure solutions of polymorphs A and B, 13 degrees of freedom (3 translational, 3 orientational, 7 torsion angles) were determined in approximately 2 h of computer time, demonstrating that the crystal packing and the molecular conformation of medium-sized (MW approximately 500) pharmaceutical compounds can now be solved quickly and routinely from high-resolution X-ray powder diffraction data.


Journal of Molecular Biology | 2013

One Target—Two Different Binding Modes: Structural Insights into Gevokizumab and Canakinumab Interactions to Interleukin-1β

Michaela Blech; Daniel Peter; Peter Fischer; Margit Bauer; Mathias Hafner; Markus Zeeb; Herbert Nar

Interleukin-1β (IL-1β) is a key orchestrator in inflammatory and several immune responses. IL-1β exerts its effects through interleukin-1 receptor type I (IL-1RI) and interleukin-1 receptor accessory protein (IL-1RAcP), which together form a heterotrimeric signaling-competent complex. Canakinumab and gevokizumab are highly specific IL-1β monoclonal antibodies. Canakinumab is known to neutralize IL-1β by competing for binding to IL-1R and therefore blocking signaling by the antigen:antibody complex. Gevokizumab is claimed to be a regulatory therapeutic antibody that modulates IL-1β bioactivity by reducing the affinity for its IL-1RI:IL-1RAcP signaling complex. How IL-1β signaling is affected by both canakinumab and gevokizumab was not yet experimentally determined. We have analyzed the crystal structures of canakinumab and gevokizumab antibody binding fragment (Fab) as well as of their binary complexes with IL-1β. Furthermore, we characterized the epitopes on IL-1β employed by the antibodies by NMR epitope mapping studies. The direct comparison of NMR and X-ray data shows that the epitope defined by the crystal structure encompasses predominantly those residues whose NMR resonances are severely perturbed upon complex formation. The antigen:Fab co-structures confirm the previously identified key contact residues on IL-1β and provide insight into the mechanisms leading to their distinct modulation of IL-1β signaling. A significant steric overlap of the binding interfaces of IL-1R and canakinumab on IL-1β causes competitive inhibition of the association of IL-1β and its receptor. In contrast, gevokizumab occupies an allosteric site on IL-1β and complex formation results in a minor reduction of binding affinity to IL-1RI. This suggests two different mechanisms of IL-1β pathway attenuation.


Bioorganic & Medicinal Chemistry Letters | 2008

3,5-Dihydro-imidazo[4,5-d]pyridazin-4-ones: a class of potent DPP-4 inhibitors.

Matthias Eckhardt; Norbert Hauel; Frank Himmelsbach; Elke Langkopf; Herbert Nar; Michael Mark; Moh Tadayyon; Leo Thomas; Brian Guth; Ralf Lotz

Systematic variations of the xanthine scaffold in close analogs of development compound BI 1356 led to the class of 3,5-dihydro-imidazo[4,5-d]pyridazin-4-ones which provided, after substituent screening, a series of highly potent DPP-4 inhibitors.


Frontiers in Pharmacology | 2013

The Discovery of Dabigatran Etexilate

Joanne van Ryn; Ashley Goss; Norbert Hauel; Wolfgang Wienen; Henning Priepke; Herbert Nar; Andreas Clemens

Thromboembolic disease is a major cause of mortality and morbidity in the developed world and is caused by an excessive stimulation of coagulation. Thrombin is a key serine protease in the coagulation cascade and numerous efforts have been made to develop safe and effective orally active direct thrombin inhibitors (DTIs). Current anticoagulant therapy includes the use of indirect thrombin inhibitors (e.g., heparins, low-molecular-weight-heparins) and vitamin K antagonists such as warfarin. However there are several caveats in the clinical use of these agents including narrow therapeutic window, parenteral delivery, and food- and drug–drug interactions. Dabigatran is a synthetic, reversible DTI with high affinity and specificity for its target binding both free and clot-bound thrombin, and offers a favorable pharmacokinetic profile. Large randomized clinical trials have demonstrated that dabigatran provides comparable or superior thromboprophylaxis in multiple thromboembolic disease indications compared to standard of care. This minireview will highlight the discovery and development of dabigatran, the first in a class of new oral anticoagulant agents to be licensed worldwide for the prevention of thromboembolism in the setting of orthopedic surgery and stroke prevent in atrial fibrillation.


Bioorganic & Medicinal Chemistry Letters | 2003

Heterocyclic Thrombin Inhibitors. Part 2: Quinoxalinone Derivatives as Novel, Potent Antithrombotic Agents

Uwe Ries; Henning Priepke; Norbert Hauel; Sandra Handschuh; Gerhard Mihm; Jean Marie Stassen; Wolfgang Wienen; Herbert Nar

Quinoxalinone derivatives as prototypes of dual thrombin and factor Xa inhibitors have been discovered. Nanomolar inhibition of both coagulation enzymes resulted in very potent antithrombotic activity in vitro.

Collaboration


Dive into the Herbert Nar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Uwe Ries

Boehringer Ingelheim

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge