Herianto
Gadjah Mada University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Herianto.
Healthcare Informatics Research | 2016
Wiharto Wiharto; Hari Kusnanto; Herianto Herianto
Objectives Coronary heart disease is the leading cause of death worldwide, and it is important to diagnose the level of the disease. Intelligence systems for diagnosis proved can be used to support diagnosis of the disease. Unfortunately, most of the data available between the level/type of coronary heart disease is unbalanced. As a result system performance is low. Methods This paper proposes an intelligence systems for the diagnosis of the level of coronary heart disease taking into account the problem of data imbalance. The first stage of this research was preprocessing, which included resampled non-stratified random sampling (R), the synthetic minority over-sampling technique (SMOTE), clean data out of range attribute (COR), and remove duplicate (RD). The second step was the sharing of data for training and testing using a k-fold cross-validation model and training multiclass classification by the K-star algorithm. The third step was performance evaluation. The proposed system was evaluated using the performance parameters of sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV), area under the curve (AUC) and F-measure. Results The results showed that the proposed system provides an average performance with sensitivity of 80.1%, specificity of 95%, PPV of 80.1%, NPV of 95%, AUC of 87.5%, and F-measure of 80.1%. Performance of the system without consideration of data imbalance provide showed sensitivity of 53.1%, specificity of 88,3%, PPV of 53.1%, NPV of 88.3%, AUC of 70.7%, and F-measure of 53.1%. Conclusions Based on these results it can be concluded that the proposed system is able to deliver good performance in the category of classification.
Healthcare Informatics Research | 2016
Wiharto Wiharto; Hari Kusnanto; Herianto Herianto
Objectives The interpretation of clinical data for the diagnosis of coronary heart disease can be done using algorithms in data mining. Most clinical data interpretation systems for diagnosis developed using data mining algorithms with a black-box approach cannot recognize examination attribute relationships with the incidence of coronary heart disease. Methods This study proposes a system to interpretation clinical examination results for the diagnosis of coronary heart disease based the decision tree algorithm. This system comprises several stages. First, oversampling is carried out by a combination of the synthetic minority oversampling technique (SMOTE), feature selection, and the C4.5 classification algorithm. System testing is done using k-fold cross-validation. The performance parameters are sensitivity, specificity, positive prediction value (PPV), negative prediction value (NPV) and the area under the curve (AUC). Results The results showed that the performance of the system has a sensitivity of 74.7%, a specificity of 93.7%, a PPV of 74.2%, an NPV of 93.7%, and an AUC of 84.2%. Conclusions This study demonstrated that, by using C4.5 algorithms, data can be interpreted in the form of a decision tree, to aid the understanding of the clinician. In addition, the proposed system can provide better performance by category.
Indonesian Journal of Electrical Engineering and Computer Science | 2018
Wiharto Wiharto; Herianto Herianto; Hari Kusnanto
Received Mar 3, 2018 Revised Apr 11, 2018 Accepted Apr 21, 2018 Paintball has gained a huge popularity in Malaysia with growing number of tournaments organized nationwide. Currently, Ideal Pro Event, one of the paintball organizer found difficulties to pair a suitable opponent to against one another in a tournament. This is largely due to the manual matchmaking method that only randomly matches one team with another. Consequently, it is crucial to ensure a balanced tournament bracket where eventual winners and losers not facing one another in the very first round. This study proposes an intelligent matchmaking using Particle Swarm Optimization (PSO) and tournament management system for paintball organizers. PSO is a swarm intelligence algorithm that optimizes problems by gradually improving its current solutions, therefore countenancing the tournament bracket to be continually improved until the best is produced. Indirectly, through the development of the system, it is consider as an intelligence business idea since it able to save time and enhance the company productivity. This algorithm has been tested using 3 size of population; 100, 1000 and 10,000. As a result, the speed of convergence is consistent and has not been affected through big population.N. N. S. Abdul Rahman, N.M. Saad, A. R. Abdullah, M. R. M. Hassan, M. S. S. M. Basir, N. S. M. Noor 1,2,4,6Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 2,3Center for Robotics and Industrial Automation, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 3,5Faculty of Electrical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, MalaysiaLight rail transit (LRT), or fast tram is urban public transport using rolling stock similar to a tramway, but operating at a higher capacity, and often on an exclusive right-of-way. Indonesia as one of developing countries has been developed the LRT in two cities of Indonesia, Palembang and Jakarta. There are opinions toward the development of LRT, negative and positive opinions. To reveal the level of LRT development acceptance, this research uses machine learning approach to analyze the data which is gathered through social media. By conducting this paper, the data is modeled and classified in order to analyze the social sentiment towards the LRT development.Mohamad, S., Nasir, F.M., Sunar, M.S., Isa, K., Hanifa, R.M., Shah, S.M., Ribuan, M.N., Ahmad, A. 1,4,6,7,8Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 1,2,3UTM-IRDA Digital Media Centre, Media and Game Innovation Centre of Excellence, Universiti Teknologi Malaysia, Johor, Malaysia 1,2,3Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia 5Centre for Diploma Studies, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia 6Research Centre for Applied Electromagnetics, Universiti Tun Hussein Onn Malaysia, Johor, MalaysiaReceived Jan 31, 2018 Revised Apr 21, 2018 Accepted Apr 30, 2018 Bluetooth is an emerging mobile ad-hoc network that accredits wireless communication to connect various short range devices. A single hop network called piconet is the basic communication topology of bluetooth which allows only eight active devices for communication among them seven are active slaves controlled by one master. Multiple piconets are interconnected through a common node, known as Relay, to form a massive network called as Scatternet. It is obvious that the performance of Scatternet scheduling is highly dependent and directly proportionate with the performance of the Relay node. In contrary, by reducing the number of Relays, it may lead to poor performance, since every Relay has to perform and support several piconet connections. The primary focus of this study is to observe the performance metrics that affects the inter-piconet scheduling since the Relay node’s role is like switch between multiple piconets. In this paper, we address and analyze the performance issues to be taken into consideration for efficient data flow in Scatternet based on Relay node.
International Journal of Precision Engineering and Manufacturing | 2017
Triwiyanto Triwiyanto; Oyas Wahyunggoro; Hanung Adi Nugroho; Herianto Herianto
arXiv: Learning | 2015
Wiharto Wiharto; Hari Kusnanto; Herianto Herianto
Advances in Electrical and Electronic Engineering | 2017
Triwiyanto Triwiyanto; Oyas Wahyunggoro; Hanung Adi Nugroho; Herianto Herianto
Computers & Electrical Engineering | 2018
Triwiyanto Triwiyanto; Oyas Wahyunggoro; Hanung Adi Nugroho; Herianto Herianto
International Journal of Electrical and Computer Engineering | 2017
Wiharto Wiharto; Hari Kusnanto; Herianto Herianto
Advances in Electrical and Electronic Engineering | 2017
Triwiyanto Triwiyanto; Oyas Wahyunggoro; Hanung Adi Nugroho; Herianto Herianto
Far East Journal of Electronics and Communications | 2016
Wiharto Wiharto; Hari Kusnanto; Herianto Herianto