Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Héric Valette is active.

Publication


Featured researches published by Héric Valette.


Journal of Cerebral Blood Flow and Metabolism | 2009

Decrease of nicotinic receptors in the nigrostriatal system in Parkinson's disease

Aurélie Kas; Michel Bottlaender; Jean Dominique Gallezot; Marie Vidailhet; Gabriel Villafane; Marie Claude Grégoire; Christine Coulon; Héric Valette; Frédéric Dollé; Maria-Joao Ribeiro; Philippe Hantraye; Philippe Remy

Smoking is associated with a lower incidence of Parkinsons disease (PD), which might be related to a neuroprotective action of nicotine. Postmortem studies have shown a decrease of cerebral nicotinic acetylcholine receptors (nAChRs) in PD. In this study, we evaluated the decrease of nAChRs in PD in vivo using positron emission tomography (PET), and we explored the relationship between nAChRs density and PD severity using both clinical scores and the measurement of striatal dopaminergic function. Thirteen nondemented patients with PD underwent two PET scans, one with 6-[18F]fluoro-3,4-dihydroxy-l-phenylalanine (6-[18F]fluoro-l-DOPA) to measure the dopaminergic function and another with 2-[18F]fluoro-3-[2(S)-2-azetidinylmethoxy]pyridine (2-[18F]fluoro-A-85380), a radiotracer with high affinity for the nAChRs. Distribution volumes (DVs) of 2-[18F]fluoro-A-85380 measured in the PD group were compared with those obtained from six nonsmoking healthy controls, with regions-of-interest and voxel-based approaches. Both analyses showed a significant (P<0.05) decrease of 2-[18F]fluoro-A-85380 DV in the striatum (10%) and substantia nigra (14.9%) in PD patients. Despite the wide range of PD stages, no correlation was found between DV and the clinical and PET markers of PD severity.


Drug Metabolism and Disposition | 2013

Metabolism and Quantification of [18F]DPA-714, a New TSPO Positron Emission Tomography Radioligand

Marie-Anne Peyronneau; Wadad Saba; Sébastien Goutal; Annelaure Damont; Frédéric Dollé; Michael Kassiou; Michel Bottlaender; Héric Valette

[18F]DPA-714 [N,N-diethyl-2-(2-(4-(2[18F]-fluoroethoxy)phenyl)5,7dimethylpyrazolo[1,5a]pyrimidin-3-yl)acetamide] is a new radioligand currently used for imaging the 18-kDa translocator protein in animal models of neuroinflammation and recently in humans. The biodistribution by positron emission tomography (PET) in baboons and the in vitro and in vivo metabolism of [18F]DPA-714 were investigated in rats, baboons, and humans. Whole-body PET experiments showed a high uptake of radioactivity in the kidneys, heart, liver, and gallbladder. The liver was a major route of elimination of [18F]DPA-714, and urine was a route of excretion for radiometabolites. In rat and baboon plasma, high-performance liquid chromatography (HPLC) metabolic profiles showed three major radiometabolites accounting for 85% and 89% of total radioactivity at 120 minutes after injection, respectively. Rat microsomal incubations and analyses by liquid chromatography–mass spectrometry (LC-MS) identified seven metabolites, characterized as O-deethyl, hydroxyl, and N-deethyl derivatives of nonradioactive DPA-714, two of them having the same retention times than those detected in rat and baboon plasma. The third plasma radiometabolite was suggested to be a carboxylic acid compound that accounted for 15% of the rat brain radioactivity. O-deethylation led to a nonradioactive compound and [18F]fluoroacetic acid. Human CYP3A4 and CYP2D6 were shown to be involved in the oxidation of the radioligand. Finally an easy, rapid, and accurate method—indispensable for PET quantitative clinical studies—for quantifying [18F]DPA-714 by solid-phase extraction was developed. In vivo, an extensive metabolism of [18F]DPA-714 was observed in rats and baboons, identified as [18F]deethyl, [18F]hydroxyl, and [18F]carboxylic acid derivatives of [18F]DPA-714. The main route of excretion of the unchanged radioligand in baboons was hepatobiliary while that of radiometabolites was the urinary system.


The Journal of Nuclear Medicine | 2011

Transport of Selected PET Radiotracers by Human P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2): An In Vitro Screening

Nicolas Tournier; Héric Valette; Marie-Anne Peyronneau; Wadad Saba; Sébastien Goutal; Bertrand Kuhnast; Frédéric Dollé; Jean-Michel Scherrmann; Salvatore Cisternino; Michel Bottlaender

Radiolabeled compounds used for brain imaging with PET must readily cross the blood–brain barrier (BBB) to reach their target. Efflux transporters at the BBB—P-glycoprotein (P-gp) and the breast cancer resistance protein (BCRP)—could limit their uptake by the brain. Methods: We developed and validated an in vitro model using MDCKII cells transfected with human multidrug resistance (MDR1) or BCRP genes and assessed the transport of selected PET ligands by the concentration equilibrium technique. The tested compounds included befloxatone, (R,S)-CGP-12177, clorgyline, R-(−)-deprenyl, diprenorphine, DPA-714, fallypride, flumazenil, 2-fluoro-A-85380, LBT-999, loperamide, p-MPPF, PE2I, Pittsburgh compound B (PIB), (R,S)-PK11195, raclopride, R-(+)-verapamil, and WAY-100635. The assays were performed using the nonradioactive form of each compound (ultraviolet high-performance liquid chromatography analysis) and, when available, the 18F-labeled analogs (γ-counting). Results: Befloxatone appeared to be transported solely by BCRP. Loperamide, verapamil, and diprenorphine were the only P-gp substrates. Other ligands were transported by neither P-gp nor BCRP. Conclusion: The present method can readily be used to screen new-compound transport by P-gp or BCRP, even before any radiolabeling. Compounds that were previously thought to be transported by P-gp in rodents, such as p-MPPF, WAY-100635, and flumazenil, cannot be considered substrates of human P-gp. The impact of BCRP and P-gp at the BBB on the transport of befloxatone and diprenorphine in vivo remains to be evaluated with PET.


Aaps Journal | 2013

Effects of Selected OATP and/or ABC Transporter Inhibitors on the Brain and Whole-Body Distribution of Glyburide

Nicolas Tournier; Wadad Saba; Salvatore Cisternino; Marie-Anne Peyronneau; Annelaure Damont; Sébastien Goutal; Albertine Dubois; Frédéric Dollé; Jean-Michel Scherrmann; Héric Valette; Bertrand Kuhnast; Michel Bottlaender

Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [11C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [11C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood–brain barrier (BBB). PET revealed the critical role of OATP on liver [11C]GLB uptake and its subsequent impact on [11C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [11C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.


Synapse | 2010

[11C]SL25.1188, a new reversible radioligand to study the monoamine oxidase type B with PET: Preclinical characterisation in nonhuman primate

Wadad Saba; Héric Valette; Marie-Anne Peyronneau; Yann Bramoulle; Christine Coulon; Olivier Curet; Pascal George; Frédéric Dollé; Michel Bottlaender

[11C]SL‐25.1188 [(S)‐5‐methoxymethyl‐3‐[6‐(4,4,4‐trifluorobutoxy)‐benzo[d]isoxazol‐3‐yl]‐oxazolidin‐2‐one], an oxazolidinone derivative, was characterized in baboons as a radioligand for the in vivo visualization of MAO‐B using positron emission tomography (PET). After i.v. injection, [11C]SL25.1188 presented a rapid phase of distribution in blood (about 5 min), followed by a T1/2 elimination of 85 ± 14 min. Plasma metabolism analysis showed that [11C]SL25.1188 is stable in vivo at least for 30 min. Brain uptake was rapid with the highest one observed in the striatum and thalamus, and the lowest in the pons. Calculated distribution volumes (VT) were as follows: striatum = 10.3, thalamus = 10.9, hippocampus = 8.9, temporal cortex = 7.7, occipital cortex = 7.2, parietal cortex = 7.4, frontal cortex = 7.4, white matter = 7.4, and pons = 6.1. Pretreatment with deprenyl (2 mg/kg, i.v.) or lazabemide (0.5 mg/kg, i.v.) reduced VT values in all brain areas up to 50%. In displacement experiments, injection of SL25.1188 or deprenyl (1 and 2 mg/kg, i.v., respectively) strongly reduced the specific uptake of [11C]SL25.1188 in all brain areas (85–100%), while a lesser displacement was observed with lazabemide (0.5 mg/kg, i.v.) (55–70% of specific binding depending on the brain area). Therefore, [11C]SL25.1188 is characterized in vivo by reversible binding, high brain uptake and very slow plasma metabolism, strongly suggesting that this radioligand is a potent tool for the in vivo study of brain MAO‐B. Synapse 64:61–69, 2010.


Journal of Cerebral Blood Flow and Metabolism | 2008

Quantification of cerebral nicotinic acetylcholine receptors by PET using 2-[18F]fluoro-A-85380 and the multiinjection approach.

Jean-Dominique Gallezot; Michel Bottlaender; Jacques Delforge; Héric Valette; Wadad Saba; Frédéric Dollé; Christine Coulon; Michèle P Ottaviani; F. Hinnen; André Syrota; Marie-Claude Grégoire

The multiinjection approach was used to study in vivo interactions between α4β2* nicotinic acetylcholine receptors and 2-[18F]fluoro-A-85380 in baboons. The ligand kinetics was modeled by the usual nonlinear compartment model composed of three compartments (arterial plasma, free and specifically bound ligand in tissue). Arterial blood samples were collected to generate a metabolite-corrected plasma input function. The experimental protocol, which consisted of three injections of labeled or unlabeled ligand, was aiming at identifying all parameters in one experiment. Various parameters, including Bmax (the binding sites density) and KdVR (the apparent in vivo affinity of 2-[18F]fluoro-A-85380) could then be estimated in thalamus and in several receptor-poor regions. Bmax estimate was 3.0±0.3 pmol/mL in thalamus, and ranged from 0.25 to 1.58 pmol/ml_ in extrathalamic regions. Although KdVR could be precisely estimated, the association and dissociation rate constants kon/VR and koff could not be identified separately. A second protocol was then used to estimate koff more precisely in the thalamus. Having estimated all model parameters, we performed simulations of 2-[18F]fluoro-A-85380 kinetics to test equilibrium hypotheses underlying simplified approaches. These showed that a pseudo-equilibrium is quickly reached between the free and bound compartments, a favorable situation to apply Logan graphical analysis. In contrast, the pseudo-equilibrium between the plasma and free compartments is only reached after several hours. The ratio of radioligand concentration in these two compartments then overestimates the true equilibrium value, an unfavorable situation to estimate distribution volumes from late images after a bolus injection.


Journal of Cerebral Blood Flow and Metabolism | 2010

In vivo Quantification of Monoamine Oxidase A in Baboon Brain: A PET Study Using [11C]befloxatone and the Multi-Injection Approach

Michel Bottlaender; Héric Valette; Jacques Delforge; Wadad Saba; Ilonka Guenther; Olivier Curet; Pascal George; Frédéric Dollé; Marie-Claude Grégoire

[11C]befloxatone is a high-affinity, reversible, and selective radioligand for the in vivo visualization of the monoamine oxidase A (MAO-A) binding sites using positron emission tomography (PET). The multi-injection approach was used to study in baboons the interactions between the MAO-A binding sites and [11C]befloxatone. The model included four compartments and seven parameters. The arterial plasma concentration, corrected for metabolites, was used as input function. The experimental protocol—three injections of labeled and/or unlabeled befloxatone—allowed the evaluation of all the model parameters from a single PET experiment. In particular, the brain regional concentrations of the MAO-A binding sites (B′max) and the apparent in vivo befloxatone affinity (Kd) were estimated in vivo for the first time. A high binding site density was found in almost all the brain structures (170±39 and 194±26 pmol/mL in the frontal cortex and striata, respectively, n=5). The cerebellum presented the lowest binding site density (66±13 pmol/mL). Apparent affinity was found to be similar in all structures (KdVR=6.4±1.5 nmol/L). This study is the first PET-based estimation of the Bmax of an enzyme.


Pharmaceutical Research | 2012

Discrepancies in the P-glycoprotein-Mediated Transport of 18F-MPPF: A Pharmacokinetic Study in Mice and Non-human Primates

Nicolas Tournier; Salvatore Cisternino; Marie-Anne Peyronneau; Sébastien Goutal; Frédéric Dollé; Jean-Michel Scherrmann; Michel Bottlaender; Wadad Saba; Héric Valette

PurposeSeveral in vivo studies have found that the 5-HT1A PET radioligand 18F-MPPF is a substrate of rodent P-glycoprotein (P-gp). However, in vitro assays suggest that MPPF is not a substrate of human P-gp. We have now tested the influence of inhibiting P-gp on the brain kinetics of 18F-MPPF in mice and non-human primates.MethodsWe measured the peripheral kinetics (arterial input function, metabolism, free fraction in plasma (fP)) during 18F-MPPF brain PET scanning in baboons with or without cyclosporine A (CsA) infusion. We measured 3H-MPPF transport at the mouse BBB using in situ brain perfusion in P-gp/Bcrp deficient mice and after inhibiting P-gp with PSC833.ResultsThere was an unexpected 1.9-fold increase in brain area under the curve in CsA-treated baboons (nu2009=u20094), with no change in radiometabolite-corrected arterial input. However, total volume of distribution corrected for fP (VT/fP) remained unchanged. In situ brain perfusion showed that P-gp restricted the permeability of the mouse BBB to 3H-MPPF while Bcrp did not.ConclusionThese and previous in vitro results suggest that P-gp may not influence the permeability of human BBB to 18F-MPPF. However, CsA treatment increased 18F-MPPF free fraction, which is responsible for a misleading, P-gp unrelated enhanced brain uptake.


Nuclear Medicine and Biology | 2012

Difficulties in dopamine transporter radioligand PET analysis: the example of LBT-999 using [18F] and [11C] labelling: Part II: Metabolism studies

Marie-Anne Peyronneau; Wadad Saba; Frédéric Dollé; Sébastien Goutal; Christine Coulon; Michel Bottlaender; Héric Valette

INTRODUCTIONnLBT-999, (E)-N-(4-fluorobut-2-enyl)-2β-carbomethoxy-3β-(4-tolyl)nortropane, has been developed for PET imaging of the dopamine transporter. [(18)F]LBT-999 PET studies in baboons showed a lower brain uptake than [(11)C]LBT-999 and a high bone uptake, suggesting the presence of interfering metabolites. Therefore, in vitro and in vivo metabolism of these radiotracers was investigated.nnnMETHODSnRat and human liver microsomal incubations, baboon plasma and rat brain extracts were analyzed by radio-HPLC and LC-MS-MS.nnnRESULTSnIn vitro experiments demonstrated the formation by P450s of five polar metabolites. The main routes of LBT-999 metabolism proposed were N-dealkylation, tolyl-hydroxylation and dealkylation plus tolyl-hydroxylation. In vivo in baboons, [(18)F]LBT-999 was rapidly converted into a [(18)F]hydroxylated metabolite likely oxidized in plasma into a [(18)F]carboxylic acid and into unlabeled N-dealkyl-LBT-999. The latter was detected in baboon plasma and in rat brain by LC-MS-MS. The time course of unchanged [(18)F]LBT-999 decreased rapidly in plasma and was higher than that of [(11)C]LBT-999 due to the formation of unlabeled N-dealkyl-LBT-999. In rats, striatum-to-cerebellum ratios of [(18)F]LBT-999, [(18)F]hydroxylated and [(18)F]acidic metabolite were 20, 4.2 and 1.65, respectively, suggesting a possible accumulation of the hydroxylated compound in the striatum.nnnCONCLUSIONnP450s catalyzed the formation of dealkylated and hydroxylated metabolites of LBT-999. In baboons, an extensive metabolism of [(18)F]LBT-999, with formation of unlabeled N-dealkyl-LBT-999, [(18)F]fluorobutenaldehyde (or its oxidation product) and [(18)F]hydroxy-LBT-999 able to penetrate the brain, prevented an easy and accurate estimation of the input function of the radiotracer. CYP3A4 being the main P450 involved in the metabolism of LBT-999, a similar pathway may occur in humans and confound PET quantification.


Nuclear Medicine and Biology | 2012

Difficulties in dopamine transporter radioligand PET analysis: the example of LBT-999 using [18F] and [11C] labelling Part I: PET studies.

Wadad Saba; Marie-Anne Peyronneau; Frédéric Dollé; Sébastien Goutal; Michel Bottlaender; Héric Valette

BACKGROUNDnLBT-999 (E)-N-(4-fluorobut-2-enyl)-2β-carbomethoxy-3β-(4-tolyl)nortropane is a dopamine transporter (DAT) ligand. [(18)F]LBT-999 was first labelled with carbon-11; we will now describe its in vivo behaviour in comparison to that of [(11)C]LBT-999.nnnMETHODS/RESULTSnPositron emission tomography (PET) experiments (baboons) confirmed the high affinity/specificity of [(18)F]LBT-999 for DAT. The brain regional distribution was in accordance with that of DAT. Pre-treatment with LBT-999 (1 mg/kg iv), but not with desipramine, a norepinephrine (NET) antagonist, reduced the striatum-to-cerebellum ratio by 96%, confirming the specificity for DAT vs. NET. The parent compound decreased rapidly and represented 24.3 ± 5.0% of plasma radioactivity at 30 min pi. Whole-body scans showed an important bone uptake of free fluorine following metabolism of [(18)F]LBT-999. In the cerebellum and striatum, distribution volumes increased by 30-40% between 80 and 230 min, suggesting the polluting role of a radiometabolite(s). [(11)C]LBT-999 exhibited a 40% higher standardized uptake value in the striata. This difference is likely due to N-dealkylation followed by [(18)F]fluoride release. 2β-Carbomethoxy-3β-(4-tolyl) nortropane is then formed, while [(11)C]2β-carbomethoxy-3β-(4-tolyl) nortropane is formed following injection of [(11)C]LBT-999. This metabolite has high affinity for the DAT. In one specific PET experiment, intravenous injection of this metabolite induced a strong displacement of [(18)F]LBT-999 in the striata, confirming that this metabolite readily crosses the blood-brain barrier (BBB) and binds to DAT.nnnCONCLUSIONSn[(18)F]LBT-999 is N-dealkylated in vivo to yield (1) a nonradioactive metabolite that crosses the BBB and has a high affinity for the DAT and (2) a [(18)F]fluoro-alkyl chain which is further defluorinated. The temporal changes in distribution volumes are consistent with the accumulation of a radiometabolite(s) in the brain. Therefore, the quantification of DAT density with [(18)F]LBT-999 is rather difficult.

Collaboration


Dive into the Héric Valette's collaboration.

Researchain Logo
Decentralizing Knowledge