Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hermann Bulf is active.

Publication


Featured researches published by Hermann Bulf.


Cognition | 2008

Newborns' face recognition is based on spatial frequencies below 0.5 cycles per degree

Adélaïde de Heering; C Turati; Bruno Rossion; Hermann Bulf; Valérie Goffaux; Francesca Simion

A critical question in Cognitive Science concerns how knowledge of specific domains emerges during development. Here we examined how limitations of the visual system during the first days of life may shape subsequent development of face processing abilities. By manipulating the bands of spatial frequencies of face images, we investigated what is the nature of the visual information that newborn infants rely on to perform face recognition. Newborns were able to extract from a face the visual information lying from 0 to 1 cpd (Experiment 1), but only a narrower 0-0.5 cpd spatial frequency range was successful to accomplish face recognition (Experiment 2). These results provide the first empirical support of a low spatial frequency advantage in individual face recognition at birth and suggest that early in life low-level, non-specific perceptual constraints affect the development of the face processing system.


Child Development | 2015

Discrimination of Biomechanically Possible and Impossible Hand Movements at Birth

Elena Longhi; Irene Senna; Nadia Bolognini; Hermann Bulf; Paolo Tagliabue; Viola Macchi Cassia; Chiara Turati

The development of human body perception has long been investigated, but little is known about its early origins. This study focused on how a body part highly relevant to the human species, namely the hand, is perceived a few days after birth. Using a preferential-looking paradigm, 24- to 48-hr-old newborns watched biomechanically possible and impossible dynamic hand gestures (Experiment 1, N = 15) and static hand postures (Experiment 2, N = 15). In Experiment 1, newborns looked longer at the impossible, compared to the possible, hand movement, whereas in Experiment 2 no visual preference emerged. These findings suggest that early in life the representation of the human body may be shaped by sensory-motor experience.


Frontiers in Psychology | 2015

Many faces, one rule: the role of perceptual expertise in infants’ sequential rule learning

Hermann Bulf; Viola Brenna; Eloisa Valenza; Scott P. Johnson; Chiara Turati

Rule learning is a mechanism that allows infants to recognize and generalize rule-like patterns, such as ABB or ABA. Although infants are better at learning rules from speech vs. non-speech, rule learning can be applied also to frequently experienced visual stimuli, suggesting that perceptual expertise with material to be learned is critical in enhancing rule learning abilities. Yet infants’ rule learning has never been investigated using one of the most commonly experienced visual stimulus category available in infants’ environment, i.e., faces. Here, we investigate 7-month-olds’ ability to extract rule-like patterns from sequences composed of upright faces and compared their results to those of infants who viewed inverted faces, which presumably are encountered far less frequently than upright faces. Infants were habituated with face triads in either an ABA or ABB condition followed by a test phase with ABA and ABB triads composed of faces that differed from those showed during habituation. When upright faces were used, infants generalized the pattern presented during habituation to include the new face identities showed during testing, but when inverted faces were presented, infants failed to extract the rule. This finding supports the idea that perceptual expertise can modulate 7-month-olds’ abilities to detect rule-like patterns.


Scientific Reports | 2017

Infants learn better from left to right: a directional bias in infants’ sequence learning

Hermann Bulf; Maria Dolores de Hevia; Valeria Gariboldi; Viola Macchi Cassia

A wealth of studies show that human adults map ordered information onto a directional spatial continuum. We asked whether mapping ordinal information into a directional space constitutes an early predisposition, already functional prior to the acquisition of symbolic knowledge and language. While it is known that preverbal infants represent numerical order along a left-to-right spatial continuum, no studies have investigated yet whether infants, like adults, organize any kind of ordinal information onto a directional space. We investigated whether 7-month-olds’ ability to learn high-order rule-like patterns from visual sequences of geometric shapes was affected by the spatial orientation of the sequences (left-to-right vs. right-to-left). Results showed that infants readily learn rule-like patterns when visual sequences were presented from left to right, but not when presented from right to left. This result provides evidence that spatial orientation critically determines preverbal infants’ ability to perceive and learn ordered information in visual sequences, opening to the idea that a left-to-right spatially organized mental representation of ordered dimensions might be rooted in biologically-determined constraints on human brain development.


PLOS ONE | 2013

How a hat may affect 3-month-olds' recognition of a face: an eye-tracking study

Hermann Bulf; Eloisa Valenza; Chiara Turati

Recent studies have shown that infants’ face recognition rests on a robust face representation that is resilient to a variety of facial transformations such as rotations in depth, motion, occlusion or deprivation of inner/outer features. Here, we investigated whether 3-month-old infants’ ability to represent the invariant aspects of a face is affected by the presence of an external add-on element, i.e. a hat. Using a visual habituation task, three experiments were carried out in which face recognition was investigated by manipulating the presence/absence of a hat during face encoding (i.e. habituation phase) and face recognition (i.e. test phase). An eye-tracker system was used to record the time infants spent looking at face-relevant information compared to the hat. The results showed that infants’ face recognition was not affected by the presence of the external element when the type of the hat did not vary between the habituation and test phases, and when both the novel and the familiar face wore the same hat during the test phase (Experiment 1). Infants’ ability to recognize the invariant aspects of a face was preserved also when the hat was absent in the habituation phase and the same hat was shown only during the test phase (Experiment 2). Conversely, when the novel face identity competed with a novel hat, the hat triggered the infants’ attention, interfering with the recognition process and preventing the infants’ preference for the novel face during the test phase (Experiment 3). Findings from the current study shed light on how faces and objects are processed when they are simultaneously presented in the same visual scene, contributing to an understanding of how infants respond to the multiple and composite information available in their surrounding environment.


PLOS ONE | 2015

Face Orientation and Motion Differently Affect the Deployment of Visual Attention in Newborns and 4-Month-Old Infants.

Eloisa Valenza; Yumiko Otsuka; Hermann Bulf; Hiroko Ichikawa; So Kanazawa; Masami K. Yamaguchi

Orienting visual attention allows us to properly select relevant visual information from a noisy environment. Despite extensive investigation of the orienting of visual attention in infancy, it is unknown whether and how stimulus characteristics modulate the deployment of attention from birth to 4 months of age, a period in which the efficiency in orienting of attention improves dramatically. The aim of the present study was to compare 4-month-old infants’ and newborns’ ability to orient attention from central to peripheral stimuli that have the same or different attributes. In Experiment 1, all the stimuli were dynamic and the only attribute of the central and peripheral stimuli to be manipulated was face orientation. In Experiment 2, both face orientation and motion of the central and peripheral stimuli were contrasted. The number of valid trials and saccadic latency were measured at both ages. Our results demonstrated that the deployment of attention is mainly influenced by motion at birth, while it is also influenced by face orientation at 4-month of age. These findings provide insight into the development of the orienting visual attention in the first few months of life and suggest that maturation may be not the only factor that determines the developmental change in orienting visual attention from birth to 4 months.


Frontiers in Integrative Neuroscience | 2014

How a face may affect object-based attention: evidence from adults and 8-month-old infants

Eloisa Valenza; Laura Franchin; Hermann Bulf

Object-based attention operates on perceptual objects, opening the possibility that the costs and benefits humans have to pay to move attention between-objects might be affected by the nature of the stimuli. The current study reported two experiments with adults and 8-month-old infants investigating whether object-based-attention is affected by the type of stimulus (faces vs. non-faces stimuli). Using the well-known cueing task developed by Egly et al. (1994) to study the object-based component of attention, in Experiment 1 adult participants were presented with two upright, inverted or scrambled faces and an eye-tracker measured their saccadic latencies to find a target that could appear on the same object that was just cued or on the other object that was uncued. Data showed that an object-based effect (a smaller cost to shift attention within- compared to between-objects) occurred only with scrambled face, but not with upright or inverted faces. In Experiment 2 the same task was performed with 8-month-old infants, using upright and inverted faces. Data revealed that an object-based effect emerges only for inverted faces but not for upright faces. Overall, these findings suggest that object-based attention is modulated by the type of stimulus and by the experience acquired by the viewer with different objects.


Journal of Numerical Cognition | 2017

Operational Momentum During Ordering Operations for Size and Number in 4-Month-Old Infants

Viola Macchi Cassia; Hermann Bulf; Koleen McCrink; Maria Dolores de Hevia

An Operational Momentum (OM) effect is shown by 9-month-old infants during non-symbolic arithmetic, whereby they overestimate the outcomes to addition problems, and underestimate the outcomes to subtraction problems. Recent evidence has shown that this effect extends to ordering operations for size-based sequences in 12-month-olds. Here we provide evidence that OM occurs for ordering operations involving numerical sequences containing multiple quantity cues, but not size-based sequences, already at 4 months of age. Infants were tested in an ordinal task in which they detected and represented increasing or decreasing variations in physical and/or numerical size, and then responded to ordinal sequences that exhibited greater or lesser sizes/numerosities, thus following or violating the OM generated during habituation. Results showed that OM was absent during size ordering (Experiment 1), but was present when infants ordered arrays of discrete elements varying on numerical and non-numerical dimensions, if both number and continuous magnitudes were available cues to discriminate between with-OM and against-OM sequences during test trials (Experiments 2 vs. 3). The presence of momentum for ordering number only when provided with multiple cues of magnitude changes suggests that OM is a complex phenomenon that blends multiple representations of magnitude early in infancy.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A predisposition for biological motion in the newborn baby

Francesca Simion; Lucia Regolin; Hermann Bulf


Cognition | 2011

Visual statistical learning in the newborn infant

Hermann Bulf; Scott P. Johnson; Eloisa Valenza

Collaboration


Dive into the Hermann Bulf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viola Macchi Cassia

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Proietti

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge