Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hermann Ehrlich is active.

Publication


Featured researches published by Hermann Ehrlich.


International Geology Review | 2010

Chitin and collagen as universal and alternative templates in biomineralization

Hermann Ehrlich

Biomineralized structures and tissues are composites, containing a biologically produced organic matrix and nano- or microscale amorphous or crystalline minerals. Two main examples of organic matrices – the amino-polysaccharide chitin and the asymmetric protein collagen – are presented and discussed as the basic structural modules and organo-templates for calcium and silica biomineralization in nature. Both serve as templates, providing preferential sites for nucleation and controlling the location and orientation of mineral phases. Here, for the first time, chitin and collagen are analysed from evolutionary, structural, and functional points of view with respect to their templating properties in calcification and silicification phenomena, using both in vivo and in vitro data. It is proposed that these biopolymers be characterized as fundamental templates in biomineralization, inasmuch as they are very ancient from an evolutionary point of view, common to many species and biological systems with a global distribution. The two polymers also exhibit very similar hierarchical structural organizations, in spite of the possible alternatives they provide in chemical nature and origin. In addition, the phenomenon of multi-phase mineralization – where two minerals, amorphous and crystalline CaCO3, form from one biomolecule, chitin – is also described, analysed, and discussed for the first time.


Chemical Reviews | 2010

Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments

Hermann Ehrlich; Konstantinos D. Demadis; Oleg S. Pokrovsky; Petros G. Koutsoukos

Institute of Bioanalytical Chemistry, Dresden University of Technology, D-01069 Dresden, Germany, Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, GR-71003 Heraklion, Crete, Greece, Laboratory of Mechanisms and Transfer in Geology, Observatory Midi-Pyrenees (OMP), UMR 5563, CNRS, 14 Avenue Edouard Belin, 31400 Toulouse, France, and FORTH-ICEHT and Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, University of Patras, GR-265 04 Patras, Greece[007f]


Journal of Structural Biology | 2009

Chitin-based scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta

Eike Brunner; Hermann Ehrlich; Peter J. Schupp; René Hedrich; S. Hunoldt; Martin Kammer; Susanne Machill; Silvia Paasch; Vasily V. Bazhenov; Denis V. Kurek; T. Arnold; S. Brockmann; M. Ruhnow; Richard T. Born

The skeletons of demosponges, such as Ianthella basta, are known to be a composite material containing organic constituents. Here, we show that a filigree chitin-based scaffold is an integral component of the I. basta skeleton. These chitin-based scaffolds can be isolated from the sponge skeletons using an isolation and purification technique based on treatment with alkaline solutions. Solid-state (13)C NMR, Raman, and FT-IR spectroscopies, as well as chitinase digestion, reveal that the isolated material indeed consists of chitin. The morphology of the scaffolds has been determined by light and electron microscopy. It consists of cross-linked chitin fibers approximately 40-100 nm in diameter forming a micro-structured network. The overall shape of this network closely resembles the shape of the integer sponge skeleton. Solid-state (13)C NMR spectroscopy was used to characterize the sponge skeleton on a molecular level. The (13)C NMR signals of the chitin-based scaffolds are relatively broad, indicating a high amount of disordered chitin, possibly in the form of surface-exposed molecules. X-ray diffraction confirms that the scaffolds isolated from I. basta consist of partially disordered and loosely packed chitin with large surfaces. The spectroscopic signature of these chitin-based scaffolds is closer to that of alpha-chitin than beta-chitin.


International Journal of Biological Macromolecules | 2010

Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

Hermann Ehrlich; Micha Ilan; Manuel Maldonado; G. Muricy; Giorgio Bavestrello; Zoran Kljajić; J.L. Carballo; S. Schiaparelli; Alexander V. Ereskovsky; Peter J. Schupp; Richard T. Born; Hartmut Worch; Vasily V. Bazhenov; Denis V. Kurek; V. Varlamov; D. V. Vyalikh; Kurt Kummer; V.V. Sivkov; S. L. Molodtsov; Heike Meissner; G. Richter; E. Steck; W. Richter; S. Hunoldt; Martin Kammer; Silvia Paasch; V. Krasokhin; G. Patzke; Eike Brunner

Marine invertebrate organisms including sponges (Porifera) not only provide an abundant source of biologically active secondary metabolites but also inspire investigations to develop biomimetic composites, scaffolds and templates for practical use in materials science, biomedicine and tissue engineering. Here, we presented a detailed study of the structural and physico-chemical properties of three-dimensional skeletal scaffolds of the marine sponges Aiolochroia crassa, Aplysina aerophoba, A. cauliformis, A. cavernicola, and A. fulva (Verongida: Demospongiae). We show that these fibrous scaffolds have a multilayered design and are made of chitin. (13)C solid-state NMR spectroscopy, NEXAFS, and IR spectroscopy as well as chitinase digestion and test were applied in order to unequivocally prove the existence of alpha-chitin in all investigated species.


Nature Chemistry | 2010

Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen

Hermann Ehrlich; Rainer Deutzmann; Eike Brunner; Enrico Cappellini; Hannah Koon; Caroline Solazzo; Yue Yang; Dave Ashford; Jane Thomas-Oates; M. Lubeck; C. Baessmann; Tobias Langrock; Ralf Hoffmann; Gert Wörheide; Joachim Reitner; Paul Simon; Mikhail V. Tsurkan; Alexander V. Ereskovsky; D. Kurek; V. V. Bazhenov; S. Hunoldt; Michael Mertig; A. V. Vyalikh; S. L. Molodtsov; Kurt Kummer; Hartmut Worch; V. Smetacek; Matthew J. Collins

The minerals involved in the formation of metazoan skeletons principally comprise glassy silica, calcium phosphate or carbonate. Because of their ancient heritage, glass sponges (Hexactinellida) may shed light on fundamental questions such as molecular evolution, the unique chemistry and formation of the first skeletal silica-based structures, and the origin of multicellular animals. We have studied anchoring spicules from the metre-long stalk of the glass rope sponge (Hyalonema sieboldi; Porifera, Class Hexactinellida), which are remarkable for their size, durability, flexibility and optical properties. Using slow-alkali etching of biosilica, we isolated the organic fraction, which was revealed to be dominated by a hydroxylated fibrillar collagen that contains an unusual [Gly-3Hyp-4Hyp] motif. We speculate that this motif is predisposed for silica precipitation, and provides a novel template for biosilicification in nature.


Archive | 2010

Biological Materials of Marine Origin

Hermann Ehrlich

Biological materials of marine origi , Biological materials of marine origi , کتابخانه دیجیتال جندی شاپور اهواز


International Journal of Biological Macromolecules | 2010

Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications

Hermann Ehrlich; E. Steck; Micha Ilan; Manuel Maldonado; G. Muricy; Giorgio Bavestrello; Zoran Kljajić; J.L. Carballo; S. Schiaparelli; Alexander V. Ereskovsky; Peter J. Schupp; Richard T. Born; Hartmut Worch; Vasily V. Bazhenov; Denis V. Kurek; V. Varlamov; D. V. Vyalikh; Kurt Kummer; V.V. Sivkov; S. L. Molodtsov; Heike Meissner; G. Richter; S. Hunoldt; Martin Kammer; Silvia Paasch; V. Krasokhin; G. Patzke; Eike Brunner; W. Richter

In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts.


Micron | 2008

Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history.

Hermann Ehrlich; Petros G. Koutsoukos; Konstantinos D. Demadis; Oleg S. Pokrovsky

In contrast to biomineralization phenomena, that are among the most widely studied topics in modern material and earth science and biomedicine, much less is systematized on modern view of demineralization. Biomineralized structures and tissues are composites, containing a biologically produced organic matrix and nano- or microscale amorphous or crystalline minerals. Demineralization is the process of removing the inorganic part, or the biominerals, that takes place in nature via either physiological or pathological pathways in organisms. In vitro demineralization processes, used to obtain mechanistic information, consist in the isolation of the mineral phase of the composite biomaterials from the organic matrix. Physiological and pathological demineralization include, for example, bone resorption mediated by osteoclasts. Bioerosion, a more general term for the process of deterioration of the composite biomaterials represents chemical deterioration of the organic and mineral phase followed by biological attack of the composite by microorganisms and enzymes. Bioerosional organisms are represented by endolithic cyanobacteria, fungi, algae, plants, sponges, phoronids and polychaetes, mollusks, fish and echinoids. In the history of demineralization studies, the driving force was based on problems of human health, mostly dental caries. In this paper we summarize and integrate a number of events, discoveries, milestone papers and books on different aspect of demineralization during the last 400 years. Overall, demineralization is a rapidly growing and challenging aspect of various scientific disciplines such as astrobiology, paleoclimatology, geomedicine, archaeology, geobiology, dentistry, histology, biotechnology, and others to mention just a few.


Micron | 2009

Principles of demineralization: modern strategies for the isolation of organic frameworks. Part II. Decalcification.

Hermann Ehrlich; Petros G. Koutsoukos; Konstantinos D. Demadis; Oleg S. Pokrovsky

This is the second paper on principles of demineralization. The initial paper is dedicated to the common definitions and the history of demineralization. In present work we review the principles and mechanisms of decalcification, i.e., removing the mineral Ca-containing compounds (phosphates and carbonates) from the organic matrix in its two main aspects: natural and artificial. Natural chemical erosion of biominerals (cavitation of biogenic calcareous substrata by bacteria, fungi, algae, foraminifera, sponges, polychaetes, and mollusks) is driven by production of mineral and organic acids, acidic polysaccharides, and enzymes (cabonic anhydrase, alkaline and phosphoprotein phosphataes, and H(+)-ATPase). Examples of artifical decalcification includes demineralization of bone, dentin and enamel, and skeletal formations of corals and crustacean. The mechanism and kinetics of Ca-containing biomineral dissolution is analyzed within the framework of (i) diffusion-reaction theory; (ii) surface-reaction controlled, morphology-based theories, and (iii) phenomenological surface coordination models. The application of surface complexation model for describing and predicting the effect of organic ligands on calcium and magnesium dissolution kinetics is also described. Use of the electron microscopy-based methods for observation and visualization of the decalcification phenomenon is discussed.


Journal of Nanomaterials | 2008

Nanostructural organization of naturally occurring composites-part II: silica-chitin-based biocomposites

Hermann Ehrlich; Dorte Janussen; Paul Simon; Vasily V. Bazhenov; Nikolay P. Shapkin; Christiane Erler; Michael Mertig; René Born; Sascha Heinemann; Thomas Hanke; Hartmut Worch; John N. Vournakis

Investigations of the micro-and nanostructures and chemical composition of the sponge skeletons as examples for natural structural biocomposites are of fundamental scientific relevance. Recently, we show that some demosponges (Verongula gigantea, Aplysina sp.) and glass sponges (Farrea occa, Euplectella aspergillum) possess chitin as a component of their skeletons. The main practical approach we used for chitin isolation was based on alkali treatment of corresponding external layers of spicules sponge material with the aim of obtaining alkali-resistant compounds for detailed analysis. Here, we present a detailed study of the structural and physicochemical properties of spicules of the glass sponge Rossella fibulata. The structural similarity of chitin derived from this sponge to invertebrate alpha chitin has been confirmed by us unambiguously using physicochemical and biochemical methods. This is the first report of a silica-chitin composite biomaterial found in Rossella species. Finally, the present work includes a discussion related to strategies for the practical application of silica-chitin-based composites as biomaterials.

Collaboration


Dive into the Hermann Ehrlich's collaboration.

Top Co-Authors

Avatar

Teofil Jesionowski

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcin Wysokowski

Poznań University of Technology

View shared research outputs
Top Co-Authors

Avatar

Hartmut Worch

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Vasilii V. Bazhenov

Freiberg University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Born

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Hanke

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Eike Brunner

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

S. L. Molodtsov

Freiberg University of Mining and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge