Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hermann Pavenstädt is active.

Publication


Featured researches published by Hermann Pavenstädt.


The New England Journal of Medicine | 2010

Everolimus in Patients with Autosomal Dominant Polycystic Kidney Disease

Gerd Walz; Klemens Budde; Marwan Mannaa; Jens Nürnberger; Christoph Wanner; Claudia Sommerer; Ulrich Kunzendorf; Bernhard Banas; Walter H. Hörl; Nicholas Obermüller; Wolfgang Arns; Hermann Pavenstädt; Jens Gaedeke; Martin Büchert; Christoph May; Harald Gschaidmeier; Stefan Kramer; Kai-Uwe Eckardt

BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a slowly progressive hereditary disorder that usually leads to end-stage renal disease. Although the underlying gene mutations were identified several years ago, efficacious therapy to curtail cyst growth and prevent renal failure is not available. Experimental and observational studies suggest that the mammalian target of rapamycin (mTOR) pathway plays a critical role in cyst growth. METHODS In this 2-year, double-blind trial, we randomly assigned 433 patients with ADPKD to receive either placebo or the mTOR inhibitor everolimus. The primary outcome was the change in total kidney volume, as measured on magnetic resonance imaging, at 12 and 24 months. RESULTS Total kidney volume increased between baseline and 1 year by 102 ml in the everolimus group, versus 157 ml in the placebo group (P=0.02) and between baseline and 2 years by 230 ml and 301 ml, respectively (P=0.06). Cyst volume increased by 76 ml in the everolimus group and 98 ml in the placebo group after 1 year (P=0.27) and by 181 ml and 215 ml, respectively, after 2 years (P=0.28). Parenchymal volume increased by 26 ml in the everolimus group and 62 ml in the placebo group after 1 year (P=0.003) and by 56 ml and 93 ml, respectively, after 2 years (P=0.11). The mean decrement in the estimated glomerular filtration rate after 24 months was 8.9 ml per minute per 1.73 m2 of body-surface area in the everolimus group versus 7.7 ml per minute in the placebo group (P=0.15). Drug-specific adverse events were more common in the everolimus group; the rate of infection was similar in the two groups. CONCLUSIONS Within the 2-year study period,as compared with placebo, everolimus slowed the increase in total kidney volume of patients with ADPKD but did not slow the progression of renal impairment [corrected]. (Funded by Novartis; EudraCT number, 2006-001485-16; ClinicalTrials.gov number, NCT00414440.)


Journal of Clinical Investigation | 2010

Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice

Björn Hartleben; Markus Gödel; Catherine Meyer-Schwesinger; Shuya Liu; Theresa Ulrich; Sven Köbler; Thorsten Wiech; Florian Grahammer; Sebastian J. Arnold; Maja T. Lindenmeyer; Clemens D. Cohen; Hermann Pavenstädt; Dontscho Kerjaschki; Noboru Mizushima; Andrey S. Shaw; Gerd Walz; Tobias B. Huber

Injury and loss of podocytes are leading factors of glomerular disease and renal failure. The postmitotic podocyte is the primary glomerular target for toxic, immune, metabolic, and oxidant stress, but little is known about how this cell type copes with stress. Recently, autophagy has been identified as a major pathway that delivers damaged proteins and organelles to lysosomes in order to maintain cellular homeostasis. Here we report that podocytes exhibit an unusually high level of constitutive autophagy. Podocyte-specific deletion of autophagy-related 5 (Atg5) led to a glomerulopathy in aging mice that was accompanied by an accumulation of oxidized and ubiquitinated proteins, ER stress, and proteinuria. These changes resulted ultimately in podocyte loss and late-onset glomerulosclerosis. Analysis of pathophysiological conditions indicated that autophagy was substantially increased in glomeruli from mice with induced proteinuria and in glomeruli from patients with acquired proteinuric diseases. Further, mice lacking Atg5 in podocytes exhibited strongly increased susceptibility to models of glomerular disease. These findings highlight the importance of induced autophagy as a key homeostatic mechanism to maintain podocyte integrity. We postulate that constitutive and induced autophagy is a major protective mechanism against podocyte aging and glomerular injury, representing a putative target to ameliorate human glomerular disease and aging-related loss of renal function.


Molecular and Cellular Biology | 2003

Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling

Tobias B. Huber; Björn Hartleben; Jeong Kim; Miriam Schmidts; Bernhard Schermer; Alexander Keil; Lotti Egger; Rachel L. Lecha; Christoph Borner; Hermann Pavenstädt; Andrey S. Shaw; Gerd Walz; Thomas Benzing

ABSTRACT Mutations of NPHS1 or NPHS2, the genes encoding nephrin and podocin, as well as the targeted disruption of CD2-associated protein (CD2AP), lead to heavy proteinuria, suggesting that all three proteins are essential for the integrity of glomerular podocytes, the visceral glomerular epithelial cells of the kidney. It has been speculated that these proteins participate in common signaling pathways; however, it has remained unclear which signaling proteins are actually recruited by the slit diaphragm protein complex in vivo. We demonstrate that both nephrin and CD2AP interact with the p85 regulatory subunit of phosphoinositide 3-OH kinase (PI3K) in vivo, recruit PI3K to the plasma membrane, and, together with podocin, stimulate PI3K-dependent AKT signaling in podocytes. Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes. One such target is Bad; its phosphorylation and inactivation by 14-3-3 protects podocytes against detachment-induced cell death, suggesting that the nephrin-CD2AP-mediated AKT activity can regulate complex biological programs. Our findings reveal a novel role for the slit diaphragm proteins nephrin, CD2AP, and podocin and demonstrate that these three proteins, in addition to their structural functions, initiate PI3K/AKT-dependent signal transduction in glomerular podocytes.


American Journal of Pathology | 2005

Cisplatin Nephrotoxicity Is Critically Mediated via the Human Organic Cation Transporter 2

Giuliano Ciarimboli; Thomas Ludwig; Detlef Lang; Hermann Pavenstädt; Hermann Koepsell; Hansjürgen Piechota; Jörg Haier; Ulrich Jaehde; Jochen Zisowsky; Eberhard Schlatter

Cis-platin is an effective anti-neoplastic agent, but it is also highly nephrotoxic. Here, we clearly identify the human organic cation transporter 2 (hOCT2) as the critical transporter for cis-platin nephrotoxicity in isolated human proximal tubules and offer a potential mechanism for reducing nephrotoxicity in clinical practice. Interaction of cis-platin with hOCT2 in kidney or hOCT1 in liver was investigated with the fluorescent cation 4-[4-(dimethyl-amino)styril]-methylpyridinium in stably transfected HEK293 cells and for the first time in tissues physiologically expressing these transporters, human proximal tubules, and human hepatocyte couplets. Cis-platin (100 micromol/L) inhibited transport via hOCT2-HEK293 but not hOCT1-HEK293. In human proximal tubules cis-platin competed with basolateral organic cation transport, whereas it had no effect in tubules from a diabetic kidney or in hepatocytes. In hOCT2-HEK293 cells treated for 15 hours, incubation with cis-platin induced apoptosis, which was completely suppressed by contemporaneous incubation with the hOCT2 substrate cimetidine (100 micromol/L). These findings demonstrate that uptake of cis-platin is mediated by hOCT2 in renal proximal tubules, explaining its organ-specific toxicity. A combination of cis-platin with other substrates that compete for hOCT2 offers an effective option to decrease nephrotoxicity in the clinical setting.


Journal of Clinical Investigation | 2011

Role of mTOR in podocyte function and diabetic nephropathy in humans and mice

Markus Gödel; Björn Hartleben; Nadja Herbach; Shuya Liu; Stefan Zschiedrich; Shun Lu; Andrea Debreczeni-Mór; Maja T. Lindenmeyer; Maria Pia Rastaldi; Götz Hartleben; Thorsten Wiech; Alessia Fornoni; Robert G. Nelson; Matthias Kretzler; Rüdiger Wanke; Hermann Pavenstädt; Dontscho Kerjaschki; Clemens D. Cohen; Michael N. Hall; Markus A. Rüegg; Ken Inoki; Gerd Walz; Tobias B. Huber

Chronic glomerular diseases, associated with renal failure and cardiovascular morbidity, represent a major health issue. However, they remain poorly understood. Here we have reported that tightly controlled mTOR activity was crucial to maintaining glomerular podocyte function, while dysregulation of mTOR facilitated glomerular diseases. Genetic deletion of mTOR complex 1 (mTORC1) in mouse podocytes induced proteinuria and progressive glomerulosclerosis. Furthermore, simultaneous deletion of both mTORC1 and mTORC2 from mouse podocytes aggravated the glomerular lesions, revealing the importance of both mTOR complexes for podocyte homeostasis. In contrast, increased mTOR activity accompanied human diabetic nephropathy, characterized by early glomerular hypertrophy and hyperfiltration. Curtailing mTORC1 signaling in mice by genetically reducing mTORC1 copy number in podocytes prevented glomerulosclerosis and significantly ameliorated the progression of glomerular disease in diabetic nephropathy. These results demonstrate the requirement for tightly balanced mTOR activity in podocyte homeostasis and suggest that mTOR inhibition can protect podocytes and prevent progressive diabetic nephropathy.


JAMA | 2016

Effect of Early vs Delayed Initiation of Renal Replacement Therapy on Mortality in Critically Ill Patients With Acute Kidney Injury: The ELAIN Randomized Clinical Trial

Alexander Zarbock; John A. Kellum; Christoph Schmidt; Hugo Van Aken; Carola Wempe; Hermann Pavenstädt; Andreea Boanta; Joachim Gerß; Melanie Meersch

IMPORTANCE Optimal timing of initiation of renal replacement therapy (RRT) for severe acute kidney injury (AKI) but without life-threatening indications is still unknown. OBJECTIVE To determine whether early initiation of RRT in patients who are critically ill with AKI reduces 90-day all-cause mortality. DESIGN, SETTING, AND PARTICIPANTS Single-center randomized clinical trial of 231 critically ill patients with AKI Kidney Disease: Improving Global Outcomes (KDIGO) stage 2 (≥2 times baseline or urinary output <0.5 mL/kg/h for ≥12 hours) and plasma neutrophil gelatinase-associated lipocalin level higher than 150 ng/mL enrolled between August 2013 and June 2015 from a university hospital in Germany. INTERVENTIONS Early (within 8 hours of diagnosis of KDIGO stage 2; n = 112) or delayed (within 12 hours of stage 3 AKI or no initiation; n = 119) initiation of RRT. MAIN OUTCOMES AND MEASURES The primary end point was mortality at 90 days after randomization. Secondary end points included 28- and 60-day mortality, clinical evidence of organ dysfunction, recovery of renal function, requirement of RRT after day 90, duration of renal support, and intensive care unit (ICU) and hospital length of stay. RESULTS Among 231 patients (mean age, 67 years; men, 146 [63.2%]), all patients in the early group (n = 112) and 108 of 119 patients (90.8%) in the delayed group received RRT. All patients completed follow-up at 90 days. Median time (Q1, Q3) from meeting full eligibility criteria to RRT initiation was significantly shorter in the early group (6.0 hours [Q1, Q3: 4.0, 7.0]) than in the delayed group (25.5 h [Q1, Q3: 18.8, 40.3]; difference, -21.0 [95% CI, -24.0 to -18.0]; P < .001). Early initiation of RRT significantly reduced 90-day mortality (44 of 112 patients [39.3%]) compared with delayed initiation of RRT (65 of 119 patients [54.7%]; hazard ratio [HR], 0.66 [95% CI, 0.45 to 0.97]; difference, -15.4% [95% CI, -28.1% to -2.6%]; P = .03). More patients in the early group recovered renal function by day 90 (60 of 112 patients [53.6%] in the early group vs 46 of 119 patients [38.7%] in the delayed group; odds ratio [OR], 0.55 [95% CI, 0.32 to 0. 93]; difference, 14.9% [95% CI, 2.2% to 27.6%]; P = .02). Duration of RRT and length of hospital stay were significantly shorter in the early group than in the delayed group (RRT: 9 days [Q1, Q3: 4, 44] in the early group vs 25 days [Q1, Q3: 7, >90] in the delayed group; P = .04; HR, 0.69 [95% CI, 0.48 to 1.00]; difference, -18 days [95% CI, -41 to 4]; hospital stay: 51 days [Q1, Q3: 31, 74] in the early group vs 82 days [Q1, Q3: 67, >90] in the delayed group; P < .001; HR, 0.34 [95% CI, 0.22 to 0.52]; difference, -37 days [95% CI, -∞ to -19.5]), but there was no significant effect on requirement of RRT after day 90, organ dysfunction, and length of ICU stay. CONCLUSIONS AND RELEVANCE Among critically ill patients with AKI, early RRT compared with delayed initiation of RRT reduced mortality over the first 90 days. Further multicenter trials of this intervention are warranted. TRIAL REGISTRATION German Clinical Trial Registry Identifier: DRKS00004367.


American Journal of Pathology | 2010

Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions.

Giuliano Ciarimboli; Dirk Deuster; Arne Knief; Michael R. Sperling; Michael Holtkamp; Bayram Edemir; Hermann Pavenstädt; Claudia Lanvers-Kaminsky; Antoinette am Zehnhoff-Dinnesen; Alfred H. Schinkel; Hermann Koepsell; Heribert Jürgens; Eberhard Schlatter

The use of the effective antineoplastic agent cisplatin is limited by its serious side effects, such as oto- and nephrotoxicity. Ototoxicity is a problem of special importance in children, because deafness hampers their language and psychosocial development. Recently, organic cation transporters (OCTs) were identified in vitro as cellular uptake mechanisms for cisplatin. In the present study, we investigated in an in vivo model the role of OCTs in the development of cisplatin oto- and nephrotoxicity. The functional effects of cisplatin treatment on kidney (24 hours excretion of glucose, water, and protein) and hearing (auditory brainstem response) were studied in wild-type and OCT1/2 double-knockout (KO) mice. No sign of ototoxicity and only mild nephrotoxicity were observed after cisplatin treatment of knockout mice. Comedication of wild-type mice with cisplatin and the organic cation cimetidine protected from ototoxicity and partly from nephrotoxicity. For the first time we showed that OCT2 is expressed in hair cells of the cochlea. Furthermore, cisplatin-sensitive cell lines from pediatric tumors showed no expression of mRNA for OCTs, indicating the feasibility of therapeutic approaches aimed to reduce cisplatin toxicities by competing OCT2-mediated cisplatin uptake in renal proximal tubular and cochlear hair cells. These findings are very important to establish chemotherapeutical protocols aimed to maximize the antineoplastic effect of cisplatin while reducing the risk of toxicities.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels

Tobias B. Huber; Bernhard Schermer; Roman Ulrich Müller; Martin Höhne; Malte P. Bartram; Andrea Calixto; Henning Hagmann; Christian Reinhardt; Fabienne Koos; Karl Kunzelmann; Elena Shirokova; Dietmar Krautwurst; Christian Harteneck; Matias Simons; Hermann Pavenstädt; Dontscho Kerjaschki; Christoph Thiele; Gerd Walz; Martin Chalfie; Thomas Benzing

The prohibitin (PHB)-domain proteins are membrane proteins that regulate a variety of biological activities, including mechanosensation, osmotic homeostasis, and cell signaling, although the mechanism of this regulation is unknown. We have studied two members of this large protein family, MEC-2, which is needed for touch sensitivity in Caenorhabditis elegans, and Podocin, a protein involved in the function of the filtration barrier in the mammalian kidney, and find that both proteins bind cholesterol. This binding requires the PHB domain (including palmitoylation sites within it) and part of the N-terminally adjacent hydrophobic domain that attaches the proteins to the inner leaflet of the plasma membrane. By binding to MEC-2 and Podocin, cholesterol associates with ion-channel complexes to which these proteins bind: DEG/ENaC channels for MEC-2 and TRPC channels for Podocin. Both the MEC-2-dependent activation of mechanosensation and the Podocin-dependent activation of TRPC channels require cholesterol. Thus, MEC-2, Podocin, and probably many other PHB-domain proteins by binding to themselves, cholesterol, and target proteins regulate the formation and function of large protein–cholesterol supercomplexes in the plasma membrane.


The FASEB Journal | 2002

NEPH1 defines a novel family of podocin interacting proteins

Lorenz Sellin; Tobias B. Huber; Peter Gerke; Ivo Quack; Hermann Pavenstädt; Gerd Walz

Mutations of NPHS1 or NPHS2, the genes encoding for the glomerular podocyte proteins nephrin and podocin, cause steroid‐resistant proteinuria. In addition, mice lacking NEPH1 develop a nephrotic syndrome that resembles NPHS mutations, suggesting that all three proteins are essential for the integrity of glomerular podocytes. Podocin interacts with the C‐terminal domain of nephrin and facilitates nephrin‐dependent signaling. NEPH1, a member of the immunoglobulin superfamily, is structurally related to nephrin. We report now that NEPH1 belongs to a family of three closely related proteins that interact with the C‐terminal domain of podocin. All three NEPH proteins share a conserved podocin‐binding motif; mutation of a centrally located tyrosine residue dramatically lowers the affinity of NEPH1 for podocin. NEPH1 triggers AP‐1 activation similarly to nephrin but requires the presence of Tec family kinases for efficient transactivation. We conclude that NEPH1 defines a new family of podocinbinding molecules that are potential candidates for hereditary nephrotic syndromes not linked to either NPHS1 or NPHS2.


Journal of The American Society of Nephrology | 2009

Dilemmas in the Management of Atrial Fibrillation in Chronic Kidney Disease

Holger Reinecke; Eva Brand; Rolf Mesters; Wolf-Rüdiger Schäbitz; Marc Fisher; Hermann Pavenstädt; Günter Breithardt

Patients with chronic kidney disease (CKD) have an increased risk for cardiovascular morbidity and mortality. Little attention has been paid to the problem of atrial fibrillation, although this arrhythmia is very frequent with a prevalence of 13 to 27% in patients on long-term hemodialysis. Because of the large number of pathophysiologic mechanisms involved, these patients have a high risk for both thromboembolic events and hemorrhagic complications. Stroke is a frequent complication in CKD: The US Renal Data System reports an incidence of 15.1% in hemodialysis patients compared with 9.6% in patients with other stages of CKD and 2.6% in a control cohort without CKD. The 2-yr mortality rates after stroke in these subgroups were 74, 55, and 28%, respectively. Although oral coumadin is the treatment of choice for atrial fibrillation, its use in patients with CKD is reported only in limited studies, all in hemodialysis patients, and is associated with a markedly increased rate of bleeding compared with patients without CKD. With regard to the high risk for stroke and the conflicting data about oral anticoagulation, an individualized stratification algorithm is presented based on relevant studies.

Collaboration


Dive into the Hermann Pavenstädt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eberhard Schlatter

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

R. Greger

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge