Hermanni Kaartokallio
Finnish Environment Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hermanni Kaartokallio.
Polar Biology | 2001
Hermanni Kaartokallio
Abstract Nutrient concentrations, chlorophyll-a, bacterial biomass and relative activity of denitrifying organisms were investigated from ice-core, brine and underlying water samples in February 1998 in the Gulf of Bothnia, Baltic Sea. Examined sea ice was typical for the Baltic Sea; ice bulk salinity varied from 0.1 to 1.6 psu, and in underlying water salinity was from 4.2 to 4.7 psu. In 2- to 3-months-old sea ice (thickness 0.4–0.6 m), sea-ice communities were at the winter stage; chl-a concentrations were generally below 1 mg m−3 and heterotrophic organisms composed 7–20% of organism assemblage. In 1-month-old ice (thickness 0.2–0.25 m), an ice spring bloom was already developing and chl-a concentrations were up to 5.6 mg m−3. In relation to low salinity, high concentrations of NH+4, NO−2, PO3+4 and SiOH4 were found in the ice column. The results suggest that the upper part of ice accumulates atmospheric nutrient load during the ice season, and nutrients in the upper 10–20 cm of ice are mainly of atmospheric origin. The most important biological processes controlling the sea-ice nutrient status are nutrient regeneration, nutrient uptake and nitrogen transformations. Nutrient regeneration is specially active in the middle parts of the 50- to 60-cm-thick ice and subsequent accumulation of nutrients probably enhances the ice spring bloom. Nitrite accumulation and denitrifying activity were located in the same ice layers with nutrient regeneration, which together with the observed significant correlation between the concentrations of nitrogenous nutrients points to active nitrogen transformations occurring in the interior layers of sea ice in the Baltic Sea.
Journal of Geophysical Research | 2014
Eero Asmala; D.G. Bowers; Riitta Autio; Hermanni Kaartokallio; David N. Thomas
The flocculation of dissolved organic matter (DOM) was studied along transects through three boreal estuaries. Besides the bulk concentration parameters, a suite of DOM quality parameters were investigated, including colored DOM (CDOM), fluorescent DOM, and the molecular weight of DOM as well as associated dissolved iron concentrations. We observed significant deviations from conservative mixing at low salinities ( 0.2�µm) and thereby removing them from the dissolved phase. We also measured flocculation of CDOM, especially in the UV region of the absorption spectrum. Protein-like fluorescence of DOM decreased, while humic-like fluorescence increased because of salt-induced flocculation. Additionally, there was a decrease in molecular weight of DOM. Consequently, the quantity and quality of the remaining DOM pool was significantly changed after influenced to flocculation. Based on these results, we constructed a mechanistic, two-component flocculation model. Our findings underline the importance of the coastal filter, where riverine organic matter is flocculated and exported to the sediments.
Applied and Environmental Microbiology | 2005
Hermanni Kaartokallio; Maria Laamanen; Kaarina Sivonen
ABSTRACT To investigate the responses of Baltic Sea wintertime bacterial communities to changing salinity (5 to 26 practical salinity units), an experimental study was conducted. Bacterial communities of Baltic seawater and sea ice from a coastal site in southwest Finland were used in two batch culture experiments run for 17 or 18 days at 0°C. Bacterial abundance, cell volume, and leucine and thymidine incorporation were measured during the experiments. The bacterial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified partial 16S rRNA genes with sequencing of DGGE bands from initial communities and communities of day 10 or 13 of the experiment. The sea ice-derived bacterial community was metabolically more active than the open-water community at the start of the experiment. Ice-derived bacterial communities were able to adapt to salinity change with smaller effects on physiology and community structure, whereas in the open-water bacterial communities, the bacterial cell volume evolution, bacterial abundance, and community structure responses indicated the presence of salinity stress. The closest relatives for all eight partial 16S rRNA gene sequences obtained were either organisms found in polar sea ice and other cold habitats or those found in summertime Baltic seawater. All sequences except one were associated with the α- and γ-proteobacteria or the Cytophaga-Flavobacterium-Bacteroides group. The overall physiological and community structure responses were parallel in ice-derived and open-water bacterial assemblages, which points to a linkage between community structure and physiology. These results support previous assumptions of the role of salinity fluctuation as a major selective factor shaping the sea ice bacterial community structure.
Polar Biology | 2006
Hermanni Kaartokallio; Harri Kuosa; David N. Thomas; Mats A. Granskog; Kai Kivi
A study was undertaken to examine the activity and composition of the seasonal Baltic Sea land-fast sea-ice biota along a salinity gradient in March 2003 in a coastal location in the SW coast of Finland. Using a multi-variable data set, the less well-known algal and protozoan communities, and algal and bacterial production in relation to the physical and chemical environment were investigated. Also, the first coincident measurements of bacterial production and dissolved organic matter (DOM) in a sea-ice system are reported. Communities in sea ice were clearly autotrophy-dominated with algal biomass representing 79% of the total biomass. Protozoa and rotifers made up 18% of biomass in the ice and bacteria only 3%. Highest biomasses were found in mid-transect bottom ice. Water column assemblages were clearly more heterotrophic: 39% algae, 12% bacteria and 49% for rotifers and protozoa. Few significant correlations existed between DOM and bacterial variables, reflecting the complex origin of ice DOM. Dynamics of dissolved organic carbon, nitrogen and phosphorus (DOC, DON and DOP) were also uncoupled. A functional microbial loop is likely to be present in the studied ice. Existence of an under-ice freshwater plume affects the ecosystem functioning: Under-ice water communities are influenced directly by river-water mixing, whereas the ice system seems to be more independent—the interaction mainly taking place through the formation of active bottom communities.
Polar Biology | 2012
Shazia N. Aslam; Graham J. C. Underwood; Hermanni Kaartokallio; Louiza Norman; Riitta Autio; Michael Fischer; Harri Kuosa; Gerhard Dieckmann; David N. Thomas
Extracellular polymeric substances (EPS) are known to help microorganisms to survive under extreme conditions in sea ice. High concentrations of EPS are reported in sea ice from both poles; however, production and dynamics of EPS during sea ice formation have been little studied to date. This investigation followed the production and partitioning of existing and newly formed dissolved organic matter (DOM) including dissolved carbohydrates (dCHO), dissolved uronic acids (dUA) and dissolved EPS (dEPS), along with bacterial abundances during early stages of ice formation. Sea ice was formed from North Sea water with (A) ambient DOM (NSW) and (B) with additional algal-derived DOM (ADOM) in a 6d experiment in replicated mesocosms. In ADOM seawater, total bacterial numbers (TBN) increased throughout the experiment, whereas bacterial growth occurred for 5d only in the NSW seawater. TBN progressively decreased within developing sea ice but with a 2-fold greater decline in NSW compared to ADOM ice. There were significant increases in the concentrations of dCHO in ice. Percentage contribution of dEPS was highest (63%) in the colder, uppermost parts in ADOM ice suggesting the development of a cold-adapted community, producing dEPS possibly for cryo-protection and/or protection from high salinity brines. We conclude that in the early stages of ice formation, allochthonous organic matter was incorporated from parent seawater into sea ice and that once ice formation had established, there were significant changes in the concentrations and composition of dissolved organic carbon pool, resulting mainly from the production of autochthonous DOM by the bacteria.
Marine Pollution Bulletin | 2010
Jesper H. Andersen; Ciarán Murray; Hermanni Kaartokallio; Philip Axe; Jarle Molvær
We report the development of a methodology for assessing confidence in ecological status classifications. The method presented here can be considered as a secondary assessment, supporting the primary assessment of eutrophication or ecological status. The confidence assessment is based on scoring the quality of the indicators on which the primary assessment is made. This represents a first step towards linking status classification with information regarding their accuracy and precision. Applied to an existing data set used for assessment of eutrophication status of the Baltic Sea (including the Kattegat and Danish Straits) we demonstrate that confidence in the assessment is Good or High in 149 out of 189 areas assessed (79%). Contrary to our expectations, assessments of the open parts of the Baltic Sea have a higher confidence than assessments of coastal waters. We also find that in open waters of the Baltic Sea, some biological indicators have a higher confidence than indicators representing physical-chemical conditions. In coastal waters, phytoplankton, submerged aquatic vegetation and indicators of physical-chemical conditions have a higher confidence than indicators of the quality of benthic invertebrate communities. Our analyses also show that the perceived weaknesses of eutrophication assessments are due more to Low confidence in reference conditions and acceptable deviations, rather than in the monitoring data.
Hydrobiologia | 2006
Harri Kuosa; Hermanni Kaartokallio
AbstractThe effect of nutrient limitation on Baltic Sea ice algae, and substrate and nutrient limitation on ice bacteria, was studied in a series of in situ -experiments conducted during the winter of 2002 in northern Baltic Sea. Community level changes in algal biomass (chlorophyll a) and productivity, and bacterial thymidine and leucine incorporation were followed for one week after the addition of nutrient and/or organic carbon rich filtered seawater to the experimental units. The results showed the major contribution of snow cover to the algal responses during the beginning of the ice-covered season. Algal communities were able to grow even in January if no snow was present. Nutrient addition did occasionally have an effect on algal biomass and productivity in the ice. Surprisingly, seeding effect from the ice to the underlying water was negatively affected by the nutrient availability in March. Bacterial limitation varied between nutrient (phosphorus) and substrate limitations. The results showed, that limitation in both algal and bacterial communities changed periodically in the northern Baltic Sea ice.
Annals of Glaciology | 2011
Susann Müller; Anssi V. Vähätalo; Mats A. Granskog; Riitta Autio; Hermanni Kaartokallio
Abstract During sea-ice formation, the dissolved constituents of water are rejected from ice crystals. the initial fractionation of dissolved organic matter (DOM) in the Baltic Sea ice was studied through two freezing experiments and by sampling natural sea ice. DOM was characterized by the spectral absorption of chromophoric DOM (CDOM) and the parallel factor analysis of DOM fluorescence. Molecular weight measurements of DOM were applied to assess changes in the molecular size distribution of DOM in new sea ice relative to parent sea water. Both in the newly formed artificial and the natural sea ice, CDOM was enriched by 34–39% relative to salinity. the same three identified DOM fluorophores were present both in sea water and ice but enriched by 15–54% relative to salinity in ice. After the incorporation of DOM into ice, the ageing of ice decreased the spectral slope coefficient and the molecular weight of DOM. This study shows that physical processes during freezing of brackish water enrich chromo- and fluorophoric DOM relative to salts in sea ice.
AMBIO: A Journal of the Human Environment | 2007
Jorma Kuparinen; Harri Kuosa; Agneta Andersson; Riitta Autio; Mats A. Granskog; Johanna Ikävalko; Hermanni Kaartokallio; Kimmo Karell; Elina Leskinen; Jonna Piiparinen; Janne-Markus Rintala; Jaana Tuomainen
Abstract This paper compiles biological and chemical sea-ice data from three areas of the Baltic Sea: the Bothnian Bay (Hailuoto, Finland), the Bothnian Sea (Norrby, Sweden), and the Gulf of Finland (Tvärminne, Finland). The data consist mainly of field measurements and experiments conducted during the BIREME project from 2003 to 2006, supplemented with relevant published data. Our main focus was to analyze whether the biological activity in Baltic Sea sea-ice shows clear regional variability. Sea-ice in the Bothnian Bay has low chlorophyll a concentrations, and the bacterial turnover rates are low. However, we have sampled mainly land-fast level first-year sea-ice and apparently missed the most active biological system, which may reside in deformed ice (such as ice ridges). Our limited data set shows high concentrations of algae in keel blocks and keel block interstitial water under the consolidated layer of the pressure ridges in the northernmost part of the Baltic Sea. In land-fast level sea-ice in the Bothnian Sea and the Gulf of Finland, the lowermost layer appears to be the center of biological activity, though elevated biomasses can also be found occasionally in the top and interior parts of the ice. Ice algae are light limited during periods of snow cover, and phosphate is generally the limiting nutrient for ice bottom algae. Bacterial growth is evidently controlled by the production of labile dissolved organic matter by algae because low growth rates were recorded in the Bothnian Bay with high concentrations of allochthonous dissolved organic matter. Bacterial communities in the Bothnian Sea and the Gulf of Finland show high turnover rates, and activities comparable with those of open water communities during plankton blooms, which implies that sea-ice bacterial communities have high capacity to process matter during the winter period.
EPIC3MicrobiologyOpen, John Wiley & sons, pp. 1-18, ISSN: 2045-8827 | 2014
Eeva Eronen-Rasimus; Hermanni Kaartokallio; Christina Lyra; Riitta Autio; Harri Kuosa; Gerhard Dieckmann; David N. Thomas
The structure of sea‐ice bacterial communities is frequently different from that in seawater. Bacterial entrainment in sea ice has been studied with traditional microbiological, bacterial abundance, and bacterial production methods. However, the dynamics of the changes in bacterial communities during the transition from open water to frozen sea ice is largely unknown. Given previous evidence that the nutritional status of the parent water may affect bacterial communities during ice formation, bacterial succession was studied in under ice water and sea ice in two series of mesocosms: the first containing seawater from the North Sea and the second containing seawater enriched with algal‐derived dissolved organic matter (DOM). The composition and dynamics of bacterial communities were investigated with terminal restriction fragment length polymorphism (T‐RFLP), and cloning alongside bacterial production (thymidine and leucine uptake) and abundance measurements (measured by flow cytometry). Enriched and active sea‐ice bacterial communities developed in ice formed in both unenriched and DOM‐enriched seawater (0–6 days). γ‐Proteobacteria dominated in the DOM‐enriched samples, indicative of their capability for opportunistic growth in sea ice. The bacterial communities in the unenriched waters and ice consisted of the classes Flavobacteria, α‐ and γ‐Proteobacteria, which are frequently found in natural sea ice in polar regions. Furthermore, the results indicate that seawater bacterial communities are able to adapt rapidly to sudden environmental changes when facing considerable physicochemical stress such as the changes in temperature, salinity, nutrient status, and organic matter supply during ice formation.