Hernán G. Morales
Philips
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hernán G. Morales.
American Journal of Neuroradiology | 2011
Hernán G. Morales; Minsuok Kim; Elio Vivas; Maria-Cruz Villa-Uriol; Ignacio Larrabide; T. Sola; Leopoldo Guimaraens; Alejandro F. Frangi
BACKGROUND AND PURPOSE: Endovascular coiling is a well-established therapy for treating intracranial aneurysms. Nonetheless, postoperative hemodynamic changes induced by this therapy remain not fully understood. The purpose of this work is to assess the influence of coil configuration and packing density on intra-aneurysmal hemodynamics. MATERIALS AND METHODS: Three 3D rotational angiography images of 3 intracranial aneurysms before and after endovascular coiling were used. For each aneurysm, a 3D representation of the vasculature was obtained after the segmentation of the images. Afterward, a virtual coiling technique was used to treat the aneurysm geometries with coil models. The aneurysms were coiled with 5 packing densities, and each was generated by using 3 coil configurations. Computational fluid dynamics analyses were carried out in both untreated and treated aneurysm geometries. Statistical tests were performed to evaluate the relative effect of coil configuration on local hemodynamics. RESULTS: The intra-aneurysmal blood flow velocity and wall shear stress were diminished as packing density increased. Aneurysmal flow velocity was reduced >50% due to the first inserted coils (packing density <12%) but with a high dependency on coil configuration. Nonsignificant differences (P > .01) were found in the hemodynamics due to coil configuration for high packing densities (near 30%). A damping effect was observed on the intra-aneurysmal blood flow waveform after coiling. CONCLUSIONS: Intra-aneurysmal hemodynamics are altered by coils. Coil configuration might reduce its influence on intra-aneurysmal hemodynamics as the packing density increases until an insignificant influence could be achieved for high packing densities.
Philosophical Transactions of the Royal Society A | 2010
Maria-Cruz Villa-Uriol; Ignacio Larrabide; Jose M. Pozo; Minsuok Kim; Oscar Camara; M. De Craene; Chong Zhang; Arjan J. Geers; Hernán G. Morales; Hrvoje Bogunovic; Rubén Cárdenes; Alejandro F. Frangi
In the last few years, some of the visionary concepts behind the virtual physiological human began to be demonstrated on various clinical domains, showing great promise for improving healthcare management. In the current work, we provide an overview of image- and biomechanics-based techniques that, when put together, provide a patient-specific pipeline for the management of intracranial aneurysms. The derivation and subsequent integration of morphological, morphodynamic, haemodynamic and structural analyses allow us to extract patient-specific models and information from which diagnostic and prognostic descriptors can be obtained. Linking such new indices with relevant clinical events should bring new insights into the processes behind aneurysm genesis, growth and rupture. The development of techniques for modelling endovascular devices such as stents and coils allows the evaluation of alternative treatment scenarios before the intervention takes place and could also contribute to the understanding and improved design of more effective devices. A key element to facilitate the clinical take-up of all these developments is their comprehensive validation. Although a number of previously published results have shown the accuracy and robustness of individual components, further efforts should be directed to demonstrate the diagnostic and prognostic efficacy of these advanced tools through large-scale clinical trials.
Journal of Biomechanics | 2015
Hernán G. Morales; Odile Bonnefous
Arterial flow rate affects intra-aneurysmal hemodynamics but it is not clear how their relationship is. This uncertainty hinders the comparison among studies, including clinical evaluations, like a pre- and post-treatment status, since arterial flow rates may differ at each time acquisition. The purposes of this work are as follows: (1) To study how intra-aneurysmal hemodynamics changes within the full physiological range of arterial flow rates. (2) To provide characteristic curves of intra-aneurysmal velocity, wall shear stress (WSS) and pressure as functions of the arterial flow rate. Fifteen image-based aneurysm models were studied using computational fluid dynamics (CFD) simulations. The full range of physiological arterial flow rates reported in the literature was covered by 11 pulsatile simulations. For each aneurysm, the spatiotemporal-averaged blood flow velocity, WSS and pressure were calculated. Spatiotemporal-averaged velocity inside the aneurysm linearly increases as a function of the mean arterial flow (minimum R(2)>0.963). Spatiotemporal-averaged WSS and pressure at the aneurysm wall can be represented by quadratic functions of the arterial flow rate (minimum R(2)>0.996). Quantitative characterizations of spatiotemporal-averaged velocity, WSS and pressure inside cerebral aneurysms can be obtained with respect to the arterial flow rate. These characteristic curves provide more information of the relationship between arterial flow and aneurysm hemodynamics since the full range of arterial flow rates is considered. Having these curves, it is possible to compare experimental studies and clinical evaluations when different flow conditions are used.
Computerized Medical Imaging and Graphics | 2016
Ignacio Larrabide; Arjan J. Geers; Hernán G. Morales; Philippe Bijlenga; Daniel A. Rüfenacht
MOTIVATION Treatment of intracranial aneurysms with flow diverters (FDs) has recently become an attractive alternative. Although considerable effort has been devoted to understand their effects on the time-averaged or peak systolic flow field, no previous study has analyzed the variability of FD-induced flow reduction along the cardiac cycle. METHODS Fourteen saccular aneurysms, candidates for FD treatment because of their morphology, located on the internal carotid artery were virtually treated with FDs and pre- and post-treatment blood flow was simulated with CFD techniques. Common hemodynamic variables were recorded at each time step of the cardiac cycle and differences between the untreated and treated models were assessed. RESULTS Flow pulsatility, expressed by the pulsatility index (PI) of the velocity, significantly increased (36.0%; range: 14.6-88.3%) after FD treatment. Peak systole velocity reduction was significantly smaller (30.5%; range: 19.6-51.0%) than time-averaged velocity reduction (43.0%; range: 29.1-69.8%). No changes were observed in the aneurysmal pressure. CONCLUSIONS FD-induced flow reduction varies considerably during the cardiac cycle. FD treatment significantly increased the flow pulsatility in the aneurysm.
Journal of Biomechanics | 2014
Hernán G. Morales; Odile Bonnefous
BACKGROUND CFD has been used to assess intra-aneurysmal hemodynamics. Nevertheless, the lack of patient-specific flow information has triggered the possibility of implementing a wide variety of physiological flow conditions. Due to these uncertainties in the patient flow conditions, the normalization of the intra-aneurysmal hemodynamics is generally conducted. PURPOSE To investigate how intra-aneurysmal and arterial hemodynamics change over time when different physiological flow conditions are imposed. MATERIAL AND METHOD Eleven image-based aneurysm models were used in this study. CFD simulations were performed under pulsatile flows. Velocity magnitude and wall shear stress (WSS) were calculated during one cardiac cycle. RESULTS Maximum hemodynamic condition does not necessarily occurred at peak systole. The shifted time from peak systole to the time where the maximum hemodynamic condition occurs inside the aneurysm depends on the aneurysm size, flow rate, surrounding vasculature and the stabilities of flow patterns. Larger shifted times were observed with increasing aneurysm size as well as with reducing the flow rate. Moreover, the maximum hemodynamic condition can occur earlier than peak systole if flow patterns at parent artery change. Differences between peak systolic WSS and maximum WSS can be up to 65%. Moreover, the velocity magnitude and WSS depend on the selected segment of the parent artery, with relatively larger variability near peak systole than the rest of the cardiac cycle. More than 50% of differences were found between two arterial segments arbitrary selected for a given flow rate. CONCLUSIONS Our results indicate that if the highest intra-aneurysmal stress is calculated, then it is preferable to use the time instance where the maximum WSS occurred instead of the peak systolic WSS. Additionally, the normalization of intra-aneurysmal hemodynamics should be done with variables that do not depend on any arbitrary segment of the parent artery.
international symposium on biomedical imaging | 2014
M. De Craene; Martino Alessandrini; Pascal Allain; Stéphanie Marchesseau; I. Waechter-Stehle; Jürgen Weese; Eric Saloux; Hernán G. Morales; Rémi Cuingnet; Hervé Delingette; Maxime Sermesant; Olivier Bernard; Jan D'hooge
This paper proposes a new simulation framework for generating realistic 3D ultrasound synthetic images that can serve for validating strain quantification algorithms. Our approach extends previous work and combines a real ultrasound sequence with synthetic biomechanical and ultrasound models. It provides images that fairly represent all typical ultrasound artifacts. Ground truth motion fields are unbiased to any tracking algorithm and model both healthy and pathological conditions.
international symposium on biomedical imaging | 2014
Hernán G. Morales; Odile Bonnefous
In this work, we propose a novel approach for modeling hemodynamics after flow diverter (FD) stent in cerebral aneurysms. One image-based aneurysm model was used. The stented portion at the parent artery was modeled as a porous medium. Cell size, porous medium thickness and FD porosity were evaluated. Velocity magnitude and wall shear stress (WSS) inside the aneurysm were reduced after FD placement. Bigger cells compared to the stent strut diameter can be used. Thicker porous medium (which is equivalent of inserting multiple FDs) induces lower intra-aneurysmal velocity and WSS. Lower FD porosities produce higher reductions of intra-aneurysmal velocities, which diminish the contrast concentration inside the aneurysm and increase its residence time. Device design and multiple FD placements can be evaluated without remeshing the fluid domain.
Cardiovascular Engineering and Technology | 2018
Kristian Valen-Sendstad; Aslak W. Bergersen; Yuji Shimogonya; Leonid Goubergrits; Jan Bruening; Jordi Pallarès; Salvatore Cito; Senol Piskin; Kerem Pekkan; Arjan J. Geers; Ignacio Larrabide; Saikiran Rapaka; Viorel Mihalef; Wenyu Fu; Aike Qiao; Kartik Jain; Sabine Roller; Kent-Andre Mardal; Ramji Kamakoti; Thomas Spirka; Neil Ashton; Alistair Revell; Nicolas Aristokleous; J. Graeme Houston; Masanori Tsuji; Fujimaro Ishida; Prahlad G. Menon; Leonard D. Browne; Stephen P. Broderick; Masaaki Shojima
PurposeImage-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline.Methods3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods, boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters.ResultsA total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability.ConclusionsWide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.
international conference on functional imaging and modeling of heart | 2017
Èric Lluch; Rubén Doste; Sophie Giffard-Roisin; Alexandre This; Maxime Sermesant; Oscar Camara; Mathieu De Craene; Hernán G. Morales
Finite element methods (FEM) are generally used in cardiac 3D-electromechanical modeling. For FEM modeling, a step of a suitable mesh construction is required, which is non-trivial and time-consuming for complex geometries. A meshless method is proposed to avoid meshing. The smoothed particle hydrodynamics (SPH) method was used to solve an electrophysiological model on a left ventricle extracted from medical imaging straightforwardly, without any need of a complex mesh. The proposed method was compared against FEM in the same left-ventricular model. Both FEM and SPH methods provide similar solutions of the models in terms of depolarization times. Main differences were up to 10.9% at the apex. Finally, a pathological application of SPH is shown on the same ventricular geometry with an added scar on the heart wall.
American Journal of Neuroradiology | 2016
Hernán G. Morales; Odile Bonnefous; A.J. Geers; Olivier Brina; Vitor Mendes Pereira; L. Spelle; J. Moret; I. Larrabide
BACKGROUND AND PURPOSE: Our aim was to assess the performance of flow-diverter stents. The pre- and end-of-treatment angiographies are commonly compared. However, the arterial flow rate may change between acquisitions; therefore, a better understanding of its influence on the local intra-aneurysmal hemodynamics before and after flow-diverter stent use is required. MATERIALS AND METHODS: Twenty-five image-based aneurysm models extracted from 3D rotational angiograms were conditioned for computational fluid dynamics simulations. Pulsatile simulations were performed at different arterial flow rates, covering a wide possible range of physiologic flows among 1–5 mL/s. The effect of flow-diverter stents on intra-aneurysmal hemodynamics was numerically simulated with a porous medium model. Spatiotemporal-averaged intra-aneurysmal flow velocity and flow rate were calculated for each case to quantify the hemodynamics after treatment. The short-term flow-diverter stent performance was characterized by the relative velocity reduction inside the aneurysm. RESULTS: Spatiotemporal-averaged intra-aneurysmal flow velocity before and after flow-diverter stent use is linearly proportional to the mean arterial flow rate (minimum R2 > 0.983 of the linear regression models for untreated and stented models). Relative velocity reduction asymptotically decreases with increasing mean arterial flow rate. When the most probable range of arterial flow rate was considered (3–5 mL/s), instead of the wide possible flow range, the mean SD of relative velocity reduction was reduced from 3.6% to 0.48%. CONCLUSIONS: Both intra-aneurysmal aneurysm velocity and flow-diverter stent performance depend on the arterial flow rate. The performance could be considered independent of the arterial flow rates within the most probable range of physiologic flows.