Hernando A. del Portillo
University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hernando A. del Portillo.
Journal of extracellular vesicles | 2015
María Yáñez-Mó; Pia Siljander; Zoraida Andreu; Apolonija Bedina Zavec; Francesc E. Borràs; Edit I. Buzás; Krisztina Buzás; Enriqueta Casal; Francesco Cappello; Joana Carvalho; Eva Colas; Anabela Cordeiro da Silva; Stefano Fais; Juan M. Falcon-Perez; Irene M. Ghobrial; Bernd Giebel; Mario Gimona; Michael W. Graner; Ihsan Gursel; Mayda Gursel; Niels H. H. Heegaard; An Hendrix; Peter Kierulf; Katsutoshi Kokubun; Maja Kosanović; Veronika Kralj-Iglič; Eva-Maria Krämer-Albers; Saara Laitinen; Cecilia Lässer; Thomas Lener
In the past decade, extracellular vesicles (EVs) have been recognized as potent vehicles of intercellular communication, both in prokaryotes and eukaryotes. This is due to their capacity to transfer proteins, lipids and nucleic acids, thereby influencing various physiological and pathological functions of both recipient and parent cells. While intensive investigation has targeted the role of EVs in different pathological processes, for example, in cancer and autoimmune diseases, the EV-mediated maintenance of homeostasis and the regulation of physiological functions have remained less explored. Here, we provide a comprehensive overview of the current understanding of the physiological roles of EVs, which has been written by crowd-sourcing, drawing on the unique EV expertise of academia-based scientists, clinicians and industry based in 27 European countries, the United States and Australia. This review is intended to be of relevance to both researchers already working on EV biology and to newcomers who will encounter this universal cell biological system. Therefore, here we address the molecular contents and functions of EVs in various tissues and body fluids from cell systems to organs. We also review the physiological mechanisms of EVs in bacteria, lower eukaryotes and plants to highlight the functional uniformity of this emerging communication system.
Nature | 2008
Jane M. Carlton; John H. Adams; Joana C. Silva; Shelby Bidwell; Hernan Lorenzi; Elisabet Caler; Jonathan Crabtree; Samuel V. Angiuoli; Emilio F. Merino; Paolo Amedeo; Qin Cheng; Richard M. R. Coulson; Brendan S. Crabb; Hernando A. del Portillo; Kobby Essien; Tamara V. Feldblyum; Carmen Fernandez-Becerra; Paul R. Gilson; Amy H. Gueye; Xiang Guo; Simon Kang’a; Taco W. A. Kooij; Michael L. J. Korsinczky; Esmeralda V. S. Meyer; Vish Nene; Ian T. Paulsen; Owen White; Stuart A. Ralph; Qinghu Ren; Tobias Sargeant
The human malaria parasite Plasmodium vivax is responsible for 25–40% of the ∼515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.
Lancet Infectious Diseases | 2009
Ivo Mueller; Mary R. Galinski; J. Kevin Baird; Jane M. Carlton; Dhanpat Kumar Kochar; Pedro L. Alonso; Hernando A. del Portillo
Plasmodium vivax is geographically the most widely distributed cause of malaria in people, with up to 2.5 billion people at risk and an estimated 80 million to 300 million clinical cases every year--including severe disease and death. Despite this large burden of disease, P vivax is overlooked and left in the shadow of the enormous problem caused by Plasmodium falciparum in sub-Saharan Africa. The technological advances enabling the sequencing of the P vivax genome and a recent call for worldwide malaria eradication have together placed new emphasis on the importance of addressing P vivax as a major public health problem. However, because of this parasites biology, it is especially difficult to interrupt the transmission of P vivax, and experts agree that the available methods for preventing and treating infections with P vivax are inadequate. It is thus imperative that the development of new methods and strategies become a priority. Advancing the development of such methods needs renewed emphasis on understanding the biology, pathogenesis, and epidemiology of P vivax. This Review critically examines what is known about P vivax, focusing on identifying the crucial gaps that create obstacles to the elimination of this parasite in human populations.
Journal of extracellular vesicles | 2015
Thomas Lener; Mario Gimona; Ludwig Aigner; Verena Börger; Edit I. Buzás; Giovanni Camussi; Nathalie Chaput; Devasis Chatterjee; Felipe A. Court; Hernando A. del Portillo; Lorraine O'Driscoll; Stefano Fais; Juan M. Falcon-Perez; Ursula Felderhoff-Mueser; Lorenzo Fraile; Yong Song Gho; André Görgens; Ramesh C. Gupta; An Hendrix; Dirk M. Hermann; Andrew F. Hill; Fred H. Hochberg; Peter A. Horn; Dominique P.V. de Kleijn; Lambros Kordelas; Boris W. Kramer; Eva Maria Krämer-Albers; Sandra Laner-Plamberger; Saara Laitinen; Tommaso Leonardi
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
The Journal of Infectious Diseases | 2010
Bruna O. Carvalho; Stefanie C. P. Lopes; Paulo Afonso Nogueira; Patrícia Puccinelli Orlandi; Daniel Y. Bargieri; Yara C. Blanco; Ronei Luciano Mamoni; Juliana A. Leite; Mauricio M. Rodrigues; Irene S. Soares; Tatiane R. Oliveira; Gerhard Wunderlich; Marcus V. G. Lacerda; Hernando A. del Portillo; Maria Ophelia G. De Araújo; Bruce Russell; Rossarin Suwanarusk; Georges Snounou; Laurent Rénia; Fabio T. M. Costa
BACKGROUND Plasmodium falciparum and Plasmodium vivax are responsible for most of the global burden of malaria. Although the accentuated pathogenicity of P. falciparum occurs because of sequestration of the mature erythrocytic forms in the microvasculature, this phenomenon has not yet been noted in P. vivax. The increasing number of severe manifestations of P. vivax infections, similar to those observed for severe falciparum malaria, suggests that key pathogenic mechanisms (eg, cytoadherence) might be shared by the 2 parasites. METHODS Mature P. vivax-infected erythrocytes (Pv-iEs) were isolated from blood samples collected from 34 infected patients. Pv-iEs enriched on Percoll gradients were used in cytoadhesion assays with human lung endothelial cells, Saimiri brain endothelial cells, and placental cryosections. RESULTS Pv-iEs were able to cytoadhere under static and flow conditions to cells expressing endothelial receptors known to mediate the cytoadhesion of P. falciparum. Although Pv-iE cytoadhesion levels were 10-fold lower than those observed for P. falciparum-infected erythrocytes, the strength of the interaction was similar. Cytoadhesion of Pv-iEs was in part mediated by VIR proteins, encoded by P. vivax variant genes (vir), given that specific antisera inhibited the Pv-iE-endothelial cell interaction. CONCLUSIONS These observations prompt a modification of the current paradigms of the pathogenesis of malaria and clear the way to investigate the pathophysiology of P. vivax infections.
The Journal of Infectious Diseases | 2001
Takashi Nomura; Jane M.-R. Carlton; J. Kevin Baird; Hernando A. del Portillo; David J. Fryauff; Dharmendar Rathore; David A. Fidock; Xin-Zhuan Su; William E. Collins; Thomas F. McCutchan; John C. Wootton; Thomas E. Wellems
Chloroquine (CQ)-resistant Plasmodium vivax malaria was first reported 12 years ago, nearly 30 years after the recognition of CQ-resistant P. falciparum. Loss of CQ efficacy now poses a severe problem for the prevention and treatment of both diseases. Mutations in a digestive vacuole protein encoded by a 13-exon gene, pfcrt, were shown recently to have a central role in the CQ resistance (CQR) of P. falciparum. Whether mutations in pfcrt orthologues of other Plasmodium species are involved in CQR remains an open question. This report describes pfcrt homologues from P. vivax, P. knowlesi, P. berghei, and Dictyostelium discoideum. Synteny between the P. falciparum and P. vivax genes is demonstrated. However, a survey of patient isolates and monkey-adapted lines has shown no association between in vivo CQR and codon mutations in the P. vivax gene. This is evidence that the molecular events underlying P. vivax CQR differ from those in P. falciparum.
Journal of Cellular Physiology | 1996
Maria Elisabete C. Moreira; Hernando A. del Portillo; Regina Milder; José Mario de Freitas Balanco; Marcello A. Barcinski
Apoptosis and/or programmed cell death have been described in examples ranging from fungi to man as gene‐regulated processes with roles in cell and tissue physiopathology. These processes require the operation of an intercellular communicating network able to deliver alternative signals for cells with different fates and is thus considered a prerogative of multicellular organisms. Promastigotes from Leishmania (Leishmania) amazonensis, when shifted from their optimal in vitro growth temperature (22°C) to the temperature of the mammalian host (37°C), die by a calcium‐modulated mechanism. More parasites die in the presence of this ion than in its absence, as detected by a colorimetric assay based on the activity of mitochondrial and cytoplasmic dehydrogenases which measures cell death, independently of the process by which it occurs. A heat shock, unable to induce detectable parasite death (34°C for 1 h), is able to significantly raise the concentration of intracellular free calcium in these cells. Heat‐shocked parasites present ultrastructural and molecular features characteristic of cells dying by apoptosis. Morphological changes, observed only in the presence of calcium, are mainly nuclear. Cytoplasmic organelles are preserved. Heat shock is also able to induce DNA cleavage into an oligonucleosomal ladder detected in agarose gels by ethidium bromide staining and autoradiography of [α32P]ddATP‐labeled fragments. These results indicate that death by apoptosis is not exclusive of multicellular organisms.
Bioinformatics | 2015
Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio
MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.
Molecular Medicine | 2002
Karin Kirchgatter; Hernando A. del Portillo
BackgroundCytoadherence and rosetting contribute to the development of severe Plasmodium falciparum malaria. In Brazil, severe falciparum malaria is mostly associated with renal or pulmonary complications and very rarely with cerebral malaria. The most N-terminal DBL1α domain of PfEMP1, a protein encoded by the var multi-gene family mediates rosetting. We analyzed parasites of Brazilian patients with severe malaria to determine whether there were particular DBL1α var sequences predominantly expressed in such patients.Materials and MethodsDBL1α var sequences were obtained from parasites of Brazilian patients with severe and mild malaria and were analyzed by standard bioinformatic programs. Three hundred twenty var DBL1α sequences obtained from 80 Brazilian patients with mild malaria were spotted in high-density filters and hybridized to probes representing predominantly expressed sequences in parasites from patients with severe malaria. A DBL1α domain was expressed in bacteria and used to demonstrate its binding capacity to erythrocytes by immunofluorescence.ResultsForty-three different and unreported DBL1α amino acid sequences were obtained. Sequences predominantly expressed in patients with severe malaria could be subgrouped due to deletions of 1–2-cysteine residues. These sequences were commonly found in the var gene repertoire of parasites from patients with mild malaria, yet they were rarely expressed in these patients. A recombinant protein representing the most abundantly expressed sequence detected in one patient with severe malaria bound directly to uninfected erythrocytes.ConclusionThis is the first report showing an association of severe noncerebral malaria from Brazil with particular DBL1α sequences.
ACS Nano | 2016
Stefano Fais; Lorraine O'Driscoll; Francesc E. Borràs; Edit I. Buzás; Giovanni Camussi; Francesco Cappello; Joana Carvalho; Anabela Cordeiro da Silva; Hernando A. del Portillo; Samir El Andaloussi; Tanja Ficko Trček; Roberto Furlan; An Hendrix; Ihsan Gursel; Veronika Kralj-Iglič; Bertrand Kaeffer; Maja Kosanović; Marilena E. Lekka; Georg Lipps; Mariantonia Logozzi; Antonio Marcilla; Marei Sammar; Alicia Llorente; Irina Nazarenko; Carla Oliveira; Gabriella Pocsfalvi; Lawrence Rajendran; Graça Raposo; Eva Rohde; Pia Siljander
Recent research has demonstrated that all body fluids assessed contain substantial amounts of vesicles that range in size from 30 to 1000 nm and that are surrounded by phospholipid membranes containing different membrane microdomains such as lipid rafts and caveolae. The most prominent representatives of these so-called extracellular vesicles (EVs) are nanosized exosomes (70-150 nm), which are derivatives of the endosomal system, and microvesicles (100-1000 nm), which are produced by outward budding of the plasma membrane. Nanosized EVs are released by almost all cell types and mediate targeted intercellular communication under physiological and pathophysiological conditions. Containing cell-type-specific signatures, EVs have been proposed as biomarkers in a variety of diseases. Furthermore, according to their physical functions, EVs of selected cell types have been used as therapeutic agents in immune therapy, vaccination trials, regenerative medicine, and drug delivery. Undoubtedly, the rapidly emerging field of basic and applied EV research will significantly influence the biomedicinal landscape in the future. In this Perspective, we, a network of European scientists from clinical, academic, and industry settings collaborating through the H2020 European Cooperation in Science and Technology (COST) program European Network on Microvesicles and Exosomes in Health and Disease (ME-HAD), demonstrate the high potential of nanosized EVs for both diagnostic and therapeutic (i.e., theranostic) areas of nanomedicine.