Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hernando P. Bacosa is active.

Publication


Featured researches published by Hernando P. Bacosa.


Journal of Hazardous Materials | 2015

Polycyclic aromatic hydrocarbons (PAHs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in Miyagi, Japan.

Hernando P. Bacosa; Chihiro Inoue

The Great East Japan Earthquake caused tsunamis and resulted in widespread damage to human life and infrastructure. The disaster also resulted in contamination of the environment by chemicals such as polycyclic aromatic hydrocarbons (PAHs). This study was conducted to investigate the degradation potential and describe the PAH-degrading microbial communities from tsunami sediments in Miyagi, Japan. PAH-degrading bacteria were cultured by enrichment using PAH mixture or pyrene alone as carbon and energy sources. Among the ten consortia tested for PAH mixture, seven completely degraded fluorene and more than 95% of phenanthrene in 10 days, while only four consortia partially degraded pyrene. Six consortia partially degraded pyrene as a single substrate. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that each sample was dominated by unique microbial populations, regardless of sampling location. The consortia were dominated by known PAHs degraders including Sphingomonas, Pseudomonas, and Sphingobium; and previously unknown degraders such as Dokdonella and Luteimonas. A potentially novel and PAH-degrading Dokdonella was detected for the first time. PAH-ring hydroxylating dioxygenase (PAH-RHDα) gene was shown to be more effective than nidA in estimating pyrene-degrading bacteria in the enriched consortia. The consortia obtained in this study are potential candidates for remediation of PAHs contaminated soils.


Marine Pollution Bulletin | 2015

Differentiating the roles of photooxidation and biodegradation in the weathering of Light Louisiana Sweet crude oil in surface water from the Deepwater Horizon site

Hernando P. Bacosa; Deana L. Erdner; Zhanfei Liu

We determined the contributions of photooxidation and biodegradation to the weathering of Light Louisiana Sweet crude oil by incubating surface water from the Deepwater Horizon site under natural sunlight and temperature conditions. N-alkane biodegradation rate constants were ca. ten-fold higher than the photooxidation rate constants. For the 2-3 ring and 4-5 ring polycyclic aromatic hydrocarbons (PAHs), photooxidation rate constants were 0.08-0.98day(-1) and 0.01-0.07day(-1), respectively. The dispersant Corexit enhanced degradation of n-alkanes but not of PAHs. Compared to biodegradation, photooxidation increased transformation of 4-5 ring PAHs by 70% and 3-4 ring alkylated PAHs by 36%. For the first time we observed that sunlight inhibited biodegradation of pristane and phytane, possibly due to inhibition of the bacteria that can degrade branched-alkanes. This study provides quantitative measures of oil degradation under relevant field conditions crucial for understanding and modeling the fate of spilled oil in the northern Gulf of Mexico.


Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2013

Degradation potential and microbial community structure of heavy oil-enriched microbial consortia from mangrove sediments in Okinawa, Japan

Hernando P. Bacosa; Koichi Suto; Chihiro Inoue

Mangroves constitute valuable coastal resources that are vulnerable to oil pollution. One of the major processes to remove oil from contaminated mangrove sediment is microbial degradation. A study on heavy oil- and hydrocarbon-degrading bacterial consortia from mangrove sediments in Okinawa, Japan was performed to evaluate their capacity to biodegrade and their microbial community composition. Surface sediment samples were obtained from mangrove sites in Okinawa (Teima, Oura, and Okukubi) and enriched with heavy oil as the sole carbon and energy source. The results revealed that all enriched microbial consortia degraded more than 20% of heavy oil in 21 days. The K1 consortium from Okukubi site showed the most extensive degradative capacity after 7 and 21 days. All consortia degraded more than 50% of hexadecane but had little ability to degrade polycyclic aromatic hydrocarbons (PAHs). The consortia were dominated by Pseudomonas or Burkholderia. When incubated in the presence of hydrocarbon compounds, the active bacterial community shifted to favor the dominance of Pseudomonas. The K1 consortium was a superior degrader, demonstrating the highest ability to degrade aliphatic and aromatic hydrocarbon compounds; it was even able to degrade heavy oil at a concentration of 15%(w/v). The dominance and turn-over of Pseudomonas and Burkholderia in the consortia suggest an important ecological role for and relationship between these two genera in the mangrove sediments of Okinawa.


Frontiers in Microbiology | 2017

Potential Environmental Factors Affecting Oil-Degrading Bacterial Populations in Deep and Surface Waters of the Northern Gulf of Mexico.

Jiqing Liu; Hernando P. Bacosa; Zhanfei Liu

Understanding bacterial community dynamics as a result of an oil spill is important for predicting the fate of oil released to the environment and developing bioremediation strategies in the Gulf of Mexico. In this study, we aimed to elucidate the roles of temperature, water chemistry (nutrients), and initial bacterial community in selecting oil degraders through a series of incubation experiments. Surface (2 m) and bottom (1537 m) waters, collected near the Deepwater Horizon site, were amended with 200 ppm light Louisiana sweet crude oil and bacterial inoculums from surface or bottom water, and incubated at 4 or 24°C for 50 days. Bacterial community and residual oil were analyzed by pyrosequencing and gas chromatography-mass spectrometry (GC-MS), respectively. The results showed that temperature played a key role in selecting oil-degrading bacteria. Incubation at 4°C favored the development of Cycloclasticus, Pseudoalteromonas, Sulfitobacter, and Reinekea, while 24°C incubations enhanced Oleibacter, Thalassobius, Phaeobacter, and Roseobacter. Water chemistry and the initial community also had potential roles in the development of hydrocarbon-degrading bacterial communities. Pseudoalteromonas, Oleibacter, and Winogradskyella developed well in the nutrient-enriched bottom water, while Reinekea and Thalassobius were favored by low-nutrient surface water. We revealed that the combination of 4°C, crude oil and bottom inoculum was a key factor for the growth of Cycloclasticus, while the combination of surface inoculum and bottom water chemistry was important for the growth of Pseudoalteromonas. Moreover, regardless of the source of inoculum, bottom water at 24°C was a favorable condition for Oleibacter. Redundancy analysis further showed that temperature and initial community explained 57 and 19% of the variation observed, while oil and water chemistry contributed 14 and 10%, respectively. Overall, this study revealed the relative roles of temperature, water chemistry, and initial bacterial community in selecting oil degraders and regulating their evolution in the northern Gulf of Mexico.


Marine Pollution Bulletin | 2017

Petroleum hydrocarbon persistence following the Deepwater Horizon oil spill as a function of shoreline energy.

Meredith Evans; Jiqing Liu; Hernando P. Bacosa; Brad E. Rosenheim; Zhanfei Liu

An important aspect of oil spill science is understanding how the compounds within spilled oil, especially toxic components, change with weathering. In this study we follow the evolution of petroleum hydrocarbons, including n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, on a Louisiana beach and salt marsh for three years following the Deepwater Horizon spill. Relative to source oil, we report overall depletion of low molecular weight n-alkanes and PAHs in all locations with time. The magnitude of depletion, however, depends on the sampling location, whereby sites with highest wave energy have highest compound depletion. Oiled sediment from an enclosed bay shows high enrichment of high molecular weight PAHs relative to 17α(H),21β(H)-hopane, suggesting the contribution from sources other than the Deepwater Horizon spill, such as fossil fuel burning. This insight into hydrocarbon persistence as a function of hydrography and hydrocarbon source can inform policy and response for future spills.


Marine Pollution Bulletin | 2016

An in-depth survey of the oil spill literature since 1968: Long term trends and changes since Deepwater Horizon.

David J. Murphy; Brad J. Gemmell; Liana Vaccari; Cheng Li; Hernando P. Bacosa; Meredith Evans; Colbi Gemmell; Tracy Harvey; Maryam Jalali; Tagbo H.R. Niepa

In order to characterize the state of oil spill research and describe how the field has changed since its inception in the 1960s and since the Deepwater Horizon spill in 2010, we examined approximately 10% of oil spill literature (1255 of over 11,000 publications) published from 1968 to 2015. We find that, despite its episodic nature, oil spill research is a rapidly expanding field with a growth rate faster than that of science as a whole. There is a massive post-Deepwater Horizon shift of research attention to the Gulf of Mexico, from 2% of studies in 2004-2008 to 61% in 2014-2015, thus ranking Deepwater Horizon as the most studied oil spill. There is, however, a longstanding gap in research in that only 1% of studies deal with the effects of oil spills on human health. These results provide a better understanding of the current trends and gaps within the field.


Marine Pollution Bulletin | 2016

Can gelatinous zooplankton influence the fate of crude oil in marine environments

Brad J. Gemmell; Hernando P. Bacosa; Zhanfei Liu; Edward J. Buskey

Gelatinous zooplankton are known for their capacity to excrete copious amounts of mucus that can be utilized by other organisms. The release of mucus is exacerbated by stressful conditions. Despite the recognized importance of cnidarian mucus to production and material flux in marine ecosystems, the role of gelatinous zooplankton in influencing the fate of oil spills is unknown. In this study we used laboratory experiments to observe the influence of mucus from the moon jellyfish (Aurelia aurita) on the aggregation and degradation of crude oil. The results show that jellyfish swimming in a dispersed solution of oil droplets produced copious amounts of mucus and the mucus aggregates that were shed by the animals contained 26 times more oil than the surrounding water. Incubation experiments showed that hydrocarbon degrading bacteria cell densities more than doubled in the presence of mucus and after 14days, resulted in a significant increase in oil degradation. These results suggest that jellyfish can aggregate dispersed oil droplets and embed them within a matrix that favors hydrocarbon degrading bacteria. While this study lends support to the hypothesis that the presence of gelatinous zooplankton can impact oil spills large scale mesocosm studies will be needed to fully quantify the influence on a natural system.


Letters in Applied Microbiology | 2016

Dynamics of Heterocapsa sp. and the associated attached and free-living bacteria under the influence of dispersed and undispersed crude oil.

Tatiana Severin; Hernando P. Bacosa; Atsushi Sato; Deana L. Erdner

While many studies have examined the impact of oil on phytoplankton or bacteria, very few considered the effects on the biological complex formed by phytoplankton and their associated phytoplankton‐attached (PA) and free‐living (FL) bacteria. However, associated bacteria can affect the physiology of phytoplankton and influence their stress responses. In this study, we monitored the growth of Heterocapsa sp., an armoured dinoflagellate, exposed to crude oil, Corexit dispersant, or both. Growth of Heterocapsa sp. is unaffected by crude oil up to 25 ppm, a concentration similar to the lower range measured on Florida beaches after the Deepwater Horizon oil spill. The PA bacteria community was resistant to exposure, whereas the FL community shifted towards oil degraders; both responses could contribute to Heterocapsa sp. oil resistance. The growth rate of Heterocapsa sp. decreased significantly only when exposed to dispersed oil at 25 ppm, indicating a synergistic effect of dispersant on oil toxicity in this organism. For the first time, we demonstrated the decoupling of the responses of the PA and FL bacteria communities after exposure to an environmental stress, in this case oil and dispersant. Our findings suggest new directions to explore in the understanding of interactions between unicellular eukaryotes and prokaryotes.


Advanced Materials Research | 2007

Microbial Diversity in an Iron Oxidation Tank of an AMD Treatment Plant at an Abandoned Sulphur Mine

Koichi Suto; Hernando P. Bacosa; Chihiro Inoue; Eiji Matsushima

This paper describes about microbial diversity in an iron oxidation tank of an AMD treatment plant established at an abandoned sulphur mine in Japan. Since the mining operation was stopped, this mine has produced strong acidic mine drainage, pH 1.8, including a high concentration of ferrous iron, 301mg/L, and the flow rate was about 4m3/min. In 2006, a pilot scale microbial iron oxidizing system was installed to remove total iron more easily from the AMD by oxidizing ferrous iron to ferric iron. From the start of this pilot operation, microbial diversity in the iron oxidation tank was investigated using a PCR-DGGE method for about two months. In the PCR, V3 region of 16S rRNA gene for Bacteria was amplified. The profiles of DGGE showed that there were three dominant species in the iron oxidation tank through the experimental period. Number of bands on DGGE profiles decreased with dates of sampling so that the microbial population became less diverse because of the iron oxidizing operation. There was a wide variety of bacterial species of even though conditions were strongly acidic.


The ISME Journal | 2018

Hydrocarbon degradation and response of seafloor sediment bacterial community in the northern Gulf of Mexico to light Louisiana sweet crude oil

Hernando P. Bacosa; Deana L. Erdner; Brad Erik Rosenheim; Prateek Shetty; Kiley W. Seitz; Brett J. Baker; Zhanfei Liu

The Deepwater Horizon (DWH) blowout resulted in the deposition to the seafloor of up to 4.9% of 200 million gallons of oil released into the Gulf of Mexico. The petroleum hydrocarbon concentrations near the wellhead were high immediately after the spill, but returned to background levels a few years after the spill. Microbial communities in the seafloor are thought to be responsible for the degradation of hydrocarbons, however, our knowledge is primarily based upon gene diversity surveys and hydrocarbon concentration in field sediment samples. Here, we investigated the oil degradation potential and changes in bacterial community by amending seafloor sediment collected near the DWH site with crude oil and both oil and Corexit dispersant. Polycyclic aromatic hydrocarbons were rapidly degraded during the first 30 days of incubation, while alkanes were degraded more slowly. With the degradation of hydrocarbons, the relative abundances of Colwelliaceae, Alteromonadaceae, Methylococales, Alcanivorax, Bacteriovorax, and Phaeobacter increased remarkably. However, the abundances of oil-degrading bacteria changed with oil chemistry. Colwelliaceae decreased with increasing oil degradation, whereas Alcanivorax and Methylococcales increased considerably. We assembled seven genomes from the metagenome, including ones belonging to Colwellia, Alteromonadaceae, Rhodobacteraceae, the newly reported genus Woeseia, and candidate phylum NC10, all of which possess a repertoire of genes for hydrocarbon degradation. Moreover, genes related to hydrocarbon degradation were highly enriched in the oiled treatment, suggesting that the hydrocarbons were biodegraded, and that the indigenous microflora have a remarkable potential for the natural attenuation of spilled oil in the deep-sea surface sediment.

Collaboration


Dive into the Hernando P. Bacosa's collaboration.

Top Co-Authors

Avatar

Zhanfei Liu

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deana L. Erdner

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Brad J. Gemmell

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Meredith Evans

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Brad E. Rosenheim

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Colbi Gemmell

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Edward J. Buskey

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge