Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hernâni Gerós is active.

Publication


Featured researches published by Hernâni Gerós.


Biochimica et Biophysica Acta | 2009

Aquaporins are multifunctional water and solute transporters highly divergent in living organisms

D. Gomes; Alice Agasse; Pierre Thiebaud; Serge Delrot; Hernâni Gerós; François Chaumont

Aquaporins (AQPs) are ubiquitous membrane proteins whose identification, pioneered by Peter Agres team in the early nineties, provided a molecular basis for transmembrane water transport, which was previously thought to occur only by free diffusion. AQPs are members of the Major Intrinsic Protein (MIP) family and often referred to as water channels. In mammals and plants they are present in almost all organs and tissues and their function is mostly associated to water molecule movement. However, recent studies have pointed out a wider range of substrates for these proteins as well as complex regulation levels and pathways. Although their relative abundance in plants and mammals makes it difficult to investigate the role of a particular AQP, the use of knock-out and mutagenesis techniques is now bringing important clues regarding the direct implication of specific AQPs in animal pathologies or plant deficiencies. The present paper gives an overview about AQP structure, function and regulation in a broad range of living organisms. Emphasis will be given on plant AQPs where the high number and diversity of these transport proteins, together with some emerging aspects of their functionalities, make them behave more like multifunctional, highly adapted channels rather than simple water pores.


Journal of Plant Physiology | 2008

Physiological, biochemical and molecular changes occurring during olive development and ripening

Carlos Conde; Serge Delrot; Hernâni Gerós

Since ancient times the olive tree (Olea europaea), an evergreen drought- and moderately salt-tolerant species, has been cultivated for its oil and fruit in the Mediterranean basin. Olive is unique among the commercial important oil crops for many reasons. Today, it ranks sixth in the worlds production of vegetable oils. Due to its nutritional quality, olive oil has a high commercial value compared with most other plant oils. Olive oil has a well-balanced composition of fatty acids, with small amounts of palmitate, and it is highly enriched in the moneonic acid oleate. This makes it both fairly stable against auto-oxidation and suitable for human health. Nevertheless, it is the presence of minor components, in particular phenolics, contributing for oils high oxidative stability, color and flavor, that makes olive oil unique among other oils. Moreover, as a result of their demonstrated roles in the prevention of cancer and cardiovascular diseases, olive phenolics have gained much attention during the past years. Also unique to virgin olive oil is its characteristic aroma. This results from the formation of volatile compounds, namely, aldehydes and alcohols of six carbon atoms, which is triggered when olives are crushed during the process of oil extraction. The biochemistry of the olive tree is also singular. O. europaea is one of the few species able to synthesize both polyols (mannitol) and oligosaccharides (raffinose and stachyose) as the final products of the photosynthetic CO(2) fixation in the leaf. These carbohydrates, together with sucrose, can be exported from leaves to fruits to fulfill cellular metabolic requirements and act as precursors to oil synthesis. Additionally, developing olives contain active chloroplasts capable of fixing CO(2) and thus contributing to the carbon economy of the fruit. The overall quality of table olives and olive oil is influenced by the fruit ripening stage. Olive fruit ripening is a combination of physiological and biochemical changes influenced by several environmental and cultural conditions, even if most events are under strict genetic control.


Plant and Cell Physiology | 2011

Membrane Transport, Sensing and Signaling in Plant Adaptation to Environmental Stress

Artur Conde; Maria Manuela Chaves; Hernâni Gerós

Plants are generally well adapted to a wide range of environmental conditions. Even though they have notably prospered in our planet, stressful conditions such as salinity, drought and cold or heat, which are increasingly being observed worldwide in the context of the ongoing climate changes, limit their growth and productivity. Behind the remarkable ability of plants to cope with these stresses and still thrive, sophisticated and efficient mechanisms to re-establish and maintain ion and cellular homeostasis are involved. Among the plant arsenal to maintain homeostasis are efficient stress sensing and signaling mechanisms, plant cell detoxification systems, compatible solute and osmoprotectant accumulation and a vital rearrangement of solute transport and compartmentation. The key role of solute transport systems and signaling proteins in cellular homeostasis is addressed in the present work. The full understanding of the plant cell complex defense mechanisms under stress may allow for the engineering of more tolerant plants or the optimization of cultivation practices to improve yield and productivity, which is crucial at the present time as food resources are progressively scarce.


International Journal of Molecular Sciences | 2013

Berry Phenolics of Grapevine under Challenging Environments

António Teixeira; José Eiras-Dias; Simone Diego Castellarin; Hernâni Gerós

Plant phenolics have been for many years a theme of major scientific and applied interest. Grape berry phenolics contribute to organoleptic properties, color and protection against environmental challenges. Climate change has already caused significant warming in most grape-growing areas of the world, and the climatic conditions determine, to a large degree, the grape varieties that can be cultivated as well as wine quality. In particular, heat, drought and light/UV intensity severely affect phenolic metabolism and, thus, grape composition and development. In the variety Chardonnay, water stress increases the content of flavonols and decreases the expression of genes involved in biosynthesis of stilbene precursors. Also, polyphenolic profile is greatly dependent on genotype and environmental interactions. This review deals with the diversity and biosynthesis of phenolic compounds in the grape berry, from a general overview to a more detailed level, where the influence of environmental challenges on key phenolic metabolism pathways is approached. The full understanding of how and when specific phenolic compounds accumulate in the berry, and how the varietal grape berry metabolism responds to the environment is of utmost importance to adjust agricultural practices and thus, modify wine profile.


Plant Signaling & Behavior | 2009

Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H+ exchange

Paulo Silva; Hernâni Gerós

Over the last decades several efforts have been carried out to find out the mechanisms of salt homeostasis in plants and, more recently, to identify genes implicated in salt tolerance, with some plants being successfully genetically engineered to improve resistance to salt. It is well established that the efficient exclusion of Na+ excess from the cytoplasm and vacuolar Na+ accumulation are the most important steps towards the maintenance of ion homeostasis inside the cell. Therefore, the vacuole of plant cells plays a pivotal role in the storage of salt. After the identification of the vacuolar Na+/H+ antiporter Nhx1 in Saccharomyces cerevisiae, the first plant Na+/H+ antiporter, AtNHX1, was isolated from Arabidopsis and its overexpression resulted in plants exhibiting increased salt tolerance. Also, the identification of the plasma membrane Na+/H+ exchanger SOS1 and how it is regulated by a protein kinase SOS2 and a calcium binding protein SOS3 were great achievements towards the understanding of plant salt resistance. Both tonoplast and plasma membrane antiporters exclude Na+ from the cytosol driven by the proton-motive force generated by the plasma membrane H+-ATPase and by the vacuolar membrane H+-ATPase and H+-pyrophosphatase and it has been shown that the activity of these proteins respond to salinity. In this review we focus on the transcriptional and post-transcriptional regulation by salt of tonoplast proton pumps and Na+/H+ exchangers and on the signalling pathways involved in salt sensing.


Plant Physiology | 2006

Pathways of Glucose Regulation of Monosaccharide Transport in Grape Cells

Carlos Conde; Alice Agasse; David Glissant; R. M. Tavares; Hernâni Gerós; Serge Delrot

Grape (Vitis vinifera) heterotrophic suspension-cultured cells were used as a model system to study glucose (Glc) transport and its regulation. Cells transported d-[14C]Glc according to simple Michaelis-Menten kinetics superimposed on first-order kinetics. The saturating component is a high-affinity, broad-specificity H+-dependent transport system (Km = 0.05 mm). Glc concentration in the medium tightly regulated the transcription of VvHT1 (Vitis vinifera hexose transporter 1), a monosaccharide transporter previously characterized in grape berry, as well as VvHT1 protein amount and monosaccharide transport activity. All the remaining putative monosaccharide transporters identified so far in grape were poorly expressed and responded weakly to Glc. VvHT1 transcription was strongly repressed by Glc and 2-deoxy-d-Glc, but not by 3-O-methyl-d-Glc or Glc plus mannoheptulose, indicating the involvement of a hexokinase-dependent repression. 3-O-Methyl-d-Glc, which cannot be phosphorylated, and Glc plus mannoheptulose induced a decrease of transport activity caused by the reduction of VvHT1 protein in the plasma membrane without affecting VvHT1 transcript levels. This demonstrates hexokinase-independent posttranscriptional regulation. High Glc down-regulated VvHT1 transcription and Glc uptake, whereas low Glc increased those parameters. Present data provide an example showing control of plant sugar transporters by their own substrate both at transcriptional and posttranscriptional levels. VvHT1 protein has an important role in the massive import of monosaccharides into mesocarp cells of young grape berries because it was localized in plasma membranes of the early developing fruit. Protein amount decreased abruptly throughout fruit development as sugar content increases, consistent with the regulating role of Glc on VvHT1 expression found in suspension-cultured cells.


Journal of Experimental Botany | 2009

Activity of tonoplast proton pumps and Na+/H+ exchange in potato cell cultures is modulated by salt

Filipa Queirós; Natacha Fontes; Paulo Silva; Domingos P.F. Almeida; Masayoshi Maeshima; Hernâni Gerós; Fernanda Fidalgo

The efficient exclusion of excess Na from the cytoplasm and vacuolar Na(+) accumulation are the main mechanisms for the adaptation of plants to salt stress. This is typically carried out by transmembrane transport proteins that exclude Na(+) from the cytosol in exchange for H(+), a secondary transport process which is energy-dependent and driven by the proton-motive force generated by plasma-membrane and tonoplast proton pumps. Tonoplast enriched-vesicles from control and 150 mM NaCl-tolerant calli lines were used as a model system to study the activity of V-H(+)-PPase and V-H(+)-ATPase and the involvement of Na(+) compartmentalization into the vacuole as a mechanism of salt tolerance in Solanum tuberosum. Both ATP- and pyrophosphate (PP(i))-dependent H(+)-transport were higher in tonoplast vesicles from the salt-tolerant line than in vesicles from control cells. Western blotting of tonoplast proteins confirmed that changes in V-H(+)-PPase activity are correlated with increased protein amount. Conversely, immunodetection of the A-subunit of V-H(+)-ATPase revealed that a mechanism of post-translational regulation is probably involved. Na(+)-dependent dissipation of a pre-established pH gradient was used to measure Na(+)/H(+) exchange in tonoplast vesicles. The initial rates of proton efflux followed Michaelis-Menten kinetics and the V(max) of proton dissipation was 2-fold higher in NaCl-tolerant calli when compared to the control. H(+)-coupled exchange was specific for Na(+) and Li(+) and not for K(+). The increase of both the pH gradient across the tonoplast and the Na(+)/H(+) antiport activity in response to salt strongly suggests that Na(+) sequestration into the vacuole contributes to salt tolerance in potato.


Plant and Cell Physiology | 2011

Mannitol transport and mannitol dehydrogenase activities are coordinated in olea europaea under salt and osmotic stresses

Artur Conde; Paulo Silva; Alice Agasse; Carlos Conde; Hernâni Gerós

The intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterized as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in cells growing in mannitol, at 25°C and pH 9.0, were as follows: K(m), 54.5 mM mannitol; and V(max), 0.47 μmol h⁻¹ mg⁻¹ protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport in mannitol- and sucrose-grown cells. Furthermore, sucrose-grown cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence that OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and polyethylene glycol (PEG) treatments, in both mannitol- and sucrose-grown cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Taken together, these studies support that olive trees cope with salinity and drought by coordinating mannitol transport with intracellular metabolism.


Plant Physiology | 2013

Vacuolar Transport of the Medicinal Alkaloids from Catharanthus roseus Is Mediated by a Proton-Driven Antiport

Inês Carqueijeiro; Henrique Noronha; Patrícia Duarte; Hernâni Gerós; Mariana Sottomayor

A specific H+ antiport system mediates the vacuolar uptake of terpenoid indole alkaloids in Catharanthus roseus. Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3′,4′-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4+ and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H+ gradient preestablished across the tonoplast by either vacuolar H+-ATPase or vacuolar H+-pyrophosphatase. The initial rates of H+ gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H+ antiport system and not by an ion-trap mechanism or ABC transporters.


Plant and Cell Physiology | 2012

Copper Transport and Compartmentation in Grape Cells

Viviana Martins; Mohsen Hanana; Eduardo Blumwald; Hernâni Gerós

Copper-based fungicides have been widely used against several grapevine (Vitis vinifera L.) diseases since the late 1800s when the Bordeaux mixture was developed, but their intensive use has raised phytotoxicity concerns. In this study, physiological, biochemical and molecular approaches were combined to investigate the impacts of copper in grape cells and how it is transported and compartmented intracellularly. Copper reduced the growth and viability of grape cells (CSB, Cabernet Sauvignon Berry) in a dose-dependent manner above 100 µM and was accumulated in specific metal ion sinks. The copper-sensitive probe Phen Green SK was used to characterize copper transport across the plasma membrane of CSB cells. The transport system (K(m) = 583 µM; V(max) = 177 × 10(-6) %ΔF min(-1) protoplast(-1)) was regulated by copper availability in the culture medium, stimulated by Ca(2+) and inhibited by Zn(2+). The pH-sensitive fluorescent probe ACMA (9-amino-6-chloro-2-methoxyacridine) was used to evaluate the involvement of proton-dependent copper transport across the tonoplast. Cu(2+) compartmentation in the vacuole was dependent on the transmembrane pH gradient generated by both V-H(+)-ATPase and V-H(+)-pyrophosphatase (PPase). High copper levels in the growth medium did not affect the activity of V-H(+)-PPase but decreased the magnitude of the H(+) gradient generated by V-H(+)-ATPase. Expression studies of VvCTr genes showed that VvCTr1 and VvCTr8 were distinctly affected by CuSO(4) availability in grape cell cultures and that both genes were highly expressed in the green stage of grape berries.

Collaboration


Dive into the Hernâni Gerós's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge