Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hervé Bonnefoi is active.

Publication


Featured researches published by Hervé Bonnefoi.


Annals of Oncology | 2013

Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013

A. Goldhirsch; E P Winer; A S Coates; R D Gelber; M Piccart-Gebhart; B. Thürlimann; H.-J. Senn; Kathy S. Albain; Fabrice Andre; Jonas Bergh; Hervé Bonnefoi; Denisse Bretel-Morales; Harold J. Burstein; Fatima Cardoso; Monica Castiglione-Gertsch; Alan S. Coates; Marco Colleoni; Alberto Costa; Giuseppe Curigliano; Nancy E. Davidson; Angelo Di Leo; Bent Ejlertsen; John F Forbes; Richard D. Gelber; Michael Gnant; Aron Goldhirsch; Pamela J. Goodwin; Paul E. Goss; Jay R. Harris; Daniel F. Hayes

The 13th St Gallen International Breast Cancer Conference (2013) Expert Panel reviewed and endorsed substantial new evidence on aspects of the local and regional therapies for early breast cancer, supporting less extensive surgery to the axilla and shorter durations of radiation therapy. It refined its earlier approach to the classification and management of luminal disease in the absence of amplification or overexpression of the Human Epidermal growth factor Receptor 2 (HER2) oncogene, while retaining essentially unchanged recommendations for the systemic adjuvant therapy of HER2-positive and ‘triple-negative’ disease. The Panel again accepted that conventional clinico-pathological factors provided a surrogate subtype classification, while noting that in those areas of the world where multi-gene molecular assays are readily available many clinicians prefer to base chemotherapy decisions for patients with luminal disease on these genomic results rather than the surrogate subtype definitions. Several multi-gene molecular assays were recognized as providing accurate and reproducible prognostic information, and in some cases prediction of response to chemotherapy. Cost and availability preclude their application in many environments at the present time. Broad treatment recommendations are presented. Such recommendations do not imply that each Panel member agrees: indeed, among more than 100 questions, only one (trastuzumab duration) commanded 100% agreement. The various recommendations in fact carried differing degrees of support, as reflected in the nuanced wording of the text below and in the votes recorded in supplementary Appendix S1, available at Annals of Oncology online. Detailed decisions on treatment will as always involve clinical consideration of disease extent, host factors, patient preferences and social and economic constraints.


The Lancet | 2014

Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis

Patricia Cortazar; Lijun Zhang; Michael Untch; Keyur Mehta; Joseph P. Costantino; Norman Wolmark; Hervé Bonnefoi; David Cameron; Luca Gianni; Pinuccia Valagussa; Sandra M. Swain; Tatiana M. Prowell; Sibylle Loibl; D. Lawrence Wickerham; Jan Bogaerts; José Baselga; Charles M. Perou; Gideon Michael Blumenthal; Jens Uwe Blohmer; Eleftherios P. Mamounas; Jonas Bergh; Vladimir Semiglazov; Robert Justice; Holger Eidtmann; Soonmyung Paik; Martine Piccart; Rajeshwari Sridhara; Peter A. Fasching; Leen Slaets; Shenghui Tang

BACKGROUND Pathological complete response has been proposed as a surrogate endpoint for prediction of long-term clinical benefit, such as disease-free survival, event-free survival (EFS), and overall survival (OS). We had four key objectives: to establish the association between pathological complete response and EFS and OS, to establish the definition of pathological complete response that correlates best with long-term outcome, to identify the breast cancer subtypes in which pathological complete response is best correlated with long-term outcome, and to assess whether an increase in frequency of pathological complete response between treatment groups predicts improved EFS and OS. METHODS We searched PubMed, Embase, and Medline for clinical trials of neoadjuvant treatment of breast cancer. To be eligible, studies had to meet three inclusion criteria: include at least 200 patients with primary breast cancer treated with preoperative chemotherapy followed by surgery; have available data for pathological complete response, EFS, and OS; and have a median follow-up of at least 3 years. We compared the three most commonly used definitions of pathological complete response--ypT0 ypN0, ypT0/is ypN0, and ypT0/is--for their association with EFS and OS in a responder analysis. We assessed the association between pathological complete response and EFS and OS in various subgroups. Finally, we did a trial-level analysis to assess whether pathological complete response could be used as a surrogate endpoint for EFS or OS. FINDINGS We obtained data from 12 identified international trials and 11 955 patients were included in our responder analysis. Eradication of tumour from both breast and lymph nodes (ypT0 ypN0 or ypT0/is ypN0) was better associated with improved EFS (ypT0 ypN0: hazard ratio [HR] 0·44, 95% CI 0·39-0·51; ypT0/is ypN0: 0·48, 0·43-0·54) and OS (0·36, 0·30-0·44; 0·36, 0·31-0·42) than was tumour eradication from the breast alone (ypT0/is; EFS: HR 0·60, 95% CI 0·55-0·66; OS 0·51, 0·45-0·58). We used the ypT0/is ypN0 definition for all subsequent analyses. The association between pathological complete response and long-term outcomes was strongest in patients with triple-negative breast cancer (EFS: HR 0·24, 95% CI 0·18-0·33; OS: 0·16, 0·11-0·25) and in those with HER2-positive, hormone-receptor-negative tumours who received trastuzumab (EFS: 0·15, 0·09-0·27; OS: 0·08, 0·03, 0·22). In the trial-level analysis, we recorded little association between increases in frequency of pathological complete response and EFS (R(2)=0·03, 95% CI 0·00-0·25) and OS (R(2)=0·24, 0·00-0·70). INTERPRETATION Patients who attain pathological complete response defined as ypT0 ypN0 or ypT0/is ypN0 have improved survival. The prognostic value is greatest in aggressive tumour subtypes. Our pooled analysis could not validate pathological complete response as a surrogate endpoint for improved EFS and OS. FUNDING US Food and Drug Administration.


Oncogene | 2005

Identification of molecular apocrine breast tumours by microarray analysis

Pierre Farmer; Hervé Bonnefoi; Véronique Becette; Michele Tubiana-Hulin; Pierre Fumoleau; Denis Larsimont; Gaëtan MacGrogan; Jonas Bergh; David Cameron; Darlene R. Goldstein; Stephan Duss; Anne-Laure Nicoulaz; Cathrin Brisken; Maryse Fiche; Mauro Delorenzi; Richard Iggo

Previous microarray studies on breast cancer identified multiple tumour classes, of which the most prominent, named luminal and basal, differ in expression of the oestrogen receptor α gene (ER). We report here the identification of a group of breast tumours with increased androgen signalling and a ‘molecular apocrine’ gene expression profile. Tumour samples from 49 patients with large operable or locally advanced breast cancers were tested on Affymetrix U133A gene expression microarrays. Principal components analysis and hierarchical clustering split the tumours into three groups: basal, luminal and a group we call molecular apocrine. All of the molecular apocrine tumours have strong apocrine features on histological examination (P=0.0002). The molecular apocrine group is androgen receptor (AR) positive and contains all of the ER-negative tumours outside the basal group. Kolmogorov–Smirnov testing indicates that oestrogen signalling is most active in the luminal group, and androgen signalling is most active in the molecular apocrine group. ERBB2 amplification is commoner in the molecular apocrine than the other groups. Genes that best split the three groups were identified by Wilcoxon test. Correlation of the average expression profile of these genes in our data with the expression profile of individual tumours in four published breast cancer studies suggest that molecular apocrine tumours represent 8–14% of tumours in these studies. Our data show that it is possible with microarray data to divide mammary tumour cells into three groups based on steroid receptor activity: luminal (ER+ AR+), basal (ER− AR−) and molecular apocrine (ER− AR+).


The New England Journal of Medicine | 2014

Adjuvant Exemestane with Ovarian Suppression in Premenopausal Breast Cancer

Olivia Pagani; Meredith M. Regan; Barbara Walley; Gini F. Fleming; Marco Colleoni; István Láng; Henry Gomez; Carlo Tondini; Harold J. Burstein; Edith A. Perez; Eva Ciruelos; Vered Stearns; Hervé Bonnefoi; Silvana Martino; Charles E. Geyer; Graziella Pinotti; Fabio Puglisi; Diana Crivellari; Thomas Ruhstaller; Manuela Rabaglio-Poretti; Rudolf Maibach; Barbara Ruepp; Anita Giobbie-Hurder; Karen N. Price; Jürg Bernhard; Weixiu Luo; Karin Ribi; Giuseppe Viale; Alan S. Coates; Richard D. Gelber

BACKGROUND Adjuvant therapy with an aromatase inhibitor improves outcomes, as compared with tamoxifen, in postmenopausal women with hormone-receptor-positive breast cancer. METHODS In two phase 3 trials, we randomly assigned premenopausal women with hormone-receptor-positive early breast cancer to the aromatase inhibitor exemestane plus ovarian suppression or tamoxifen plus ovarian suppression for a period of 5 years. Suppression of ovarian estrogen production was achieved with the use of the gonadotropin-releasing-hormone agonist triptorelin, oophorectomy, or ovarian irradiation. The primary analysis combined data from 4690 patients in the two trials. RESULTS After a median follow-up of 68 months, disease-free survival at 5 years was 91.1% in the exemestane-ovarian suppression group and 87.3% in the tamoxifen-ovarian suppression group (hazard ratio for disease recurrence, second invasive cancer, or death, 0.72; 95% confidence interval [CI], 0.60 to 0.85; P<0.001). The rate of freedom from breast cancer at 5 years was 92.8% in the exemestane-ovarian suppression group, as compared with 88.8% in the tamoxifen-ovarian suppression group (hazard ratio for recurrence, 0.66; 95% CI, 0.55 to 0.80; P<0.001). With 194 deaths (4.1% of the patients), overall survival did not differ significantly between the two groups (hazard ratio for death in the exemestane-ovarian suppression group, 1.14; 95% CI, 0.86 to 1.51; P=0.37). Selected adverse events of grade 3 or 4 were reported for 30.6% of the patients in the exemestane-ovarian suppression group and 29.4% of those in the tamoxifen-ovarian suppression group, with profiles similar to those for postmenopausal women. CONCLUSIONS In premenopausal women with hormone-receptor-positive early breast cancer, adjuvant treatment with exemestane plus ovarian suppression, as compared with tamoxifen plus ovarian suppression, significantly reduced recurrence. (Funded by Pfizer and others; TEXT and SOFT ClinicalTrials.gov numbers, NCT00066703 and NCT00066690, respectively.).


The New England Journal of Medicine | 2015

Adjuvant ovarian suppression in premenopausal breast cancer.

Prudence A. Francis; Meredith M. Regan; Gini F. Fleming; István Láng; Eva Ciruelos; Meritxell Bellet; Hervé Bonnefoi; Miguel Angel Climent; Gian Antonio Da Prada; Harold J. Burstein; Silvana Martino; Nancy E. Davidson; Charles E. Geyer; Barbara Walley; Robert E. Coleman; Pierre Kerbrat; Stefan Buchholz; James N. Ingle; E. P Manuela Winer; Manuela Rabaglio-Poretti; Rudolf Maibach; Barbara Ruepp; Anita Giobbie-Hurder; Karen N. Price; Marco Colleoni; Giuseppe Viale; Alan S. Coates; Aron Goldhirsch; Richard D. Gelber

BACKGROUND Suppression of ovarian estrogen production reduces the recurrence of hormone-receptor-positive early breast cancer in premenopausal women, but its value when added to tamoxifen is uncertain. METHODS We randomly assigned 3066 premenopausal women, stratified according to prior receipt or nonreceipt of chemotherapy, to receive 5 years of tamoxifen, tamoxifen plus ovarian suppression, or exemestane plus ovarian suppression. The primary analysis tested the hypothesis that tamoxifen plus ovarian suppression would improve disease-free survival, as compared with tamoxifen alone. In the primary analysis, 46.7% of the patients had not received chemotherapy previously, and 53.3% had received chemotherapy and remained premenopausal. RESULTS After a median follow-up of 67 months, the estimated disease-free survival rate at 5 years was 86.6% in the tamoxifen-ovarian suppression group and 84.7% in the tamoxifen group (hazard ratio for disease recurrence, second invasive cancer, or death, 0.83; 95% confidence interval [CI], 0.66 to 1.04; P=0.10). Multivariable allowance for prognostic factors suggested a greater treatment effect with tamoxifen plus ovarian suppression than with tamoxifen alone (hazard ratio, 0.78; 95% CI, 0.62 to 0.98). Most recurrences occurred in patients who had received prior chemotherapy, among whom the rate of freedom from breast cancer at 5 years was 82.5% in the tamoxifen-ovarian suppression group and 78.0% in the tamoxifen group (hazard ratio for recurrence, 0.78; 95% CI, 0.60 to 1.02). At 5 years, the rate of freedom from breast cancer was 85.7% in the exemestane-ovarian suppression group (hazard ratio for recurrence vs. tamoxifen, 0.65; 95% CI, 0.49 to 0.87). CONCLUSIONS Adding ovarian suppression to tamoxifen did not provide a significant benefit in the overall study population. However, for women who were at sufficient risk for recurrence to warrant adjuvant chemotherapy and who remained premenopausal, the addition of ovarian suppression improved disease outcomes. Further improvement was seen with the use of exemestane plus ovarian suppression. (Funded by Pfizer and others; SOFT ClinicalTrials.gov number, NCT00066690.).


Lancet Oncology | 2007

Retraction--Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial.

Hervé Bonnefoi; Anil Potti; Mauro Delorenzi; Louis Mauriac; Mario Campone; Michèle Tubiana-Hulin; Thierry Petit; Philippe Rouanet; Jacek Jassem; Emmanuel Blot; Véronique Becette; Pierre Farmer; Sylvie André; Chaitanya R. Acharya; Sayan Mukherjee; David Cameron; Jonas Bergh; Joseph R. Nevins; Richard Iggo

BACKGROUND We have previously described gene-expression signatures that predict growth inhibitory and cytotoxic effects of common chemotherapeutic drugs in vitro. The aim of this study was to confirm the validity of these gene-expression signatures in a large series of patients with oestrogen-receptor-negative breast tumours who were treated in a phase III neoadjuvant clinical trial. METHODS This trial compares a non-taxane regimen (fluorouracil, epirubicin, and cyclophosphamide [FEC] for six cycles) with a taxane regimen (docetaxel for three cycles followed by epirubicin plus docetaxel [TET] for three cycles) in women with oestrogen-receptor-negative breast cancer. The primary endpoint of the study is the difference in progression-free survival based on TP53 status and will be reported later. Predicting response with gene signatures was a planned secondary endpoint of the trial and is reported here. Pathological complete response, defined as complete disappearance of the tumour with no more than a few scattered tumour cells detected by the pathologist in the resection specimen, was used to assess chemosensitivity. RNA was prepared from sections of frozen biopsies taken at diagnosis and hybridised to Affymetrix X3P microarrays. In-vitro single-agent drug sensitivity signatures were combined to obtain FEC and TET regimen-specific signatures. This study is registered on the clinical trials site of the US National Cancer Institute website http://www.clinicaltrials.gov/ct/show/NCT00017095. FINDINGS Of 212 patients with oestrogen-receptor-negative tumours assessed, 87 patients were excluded. 125 oestrogen-receptor-negative tumours (55 that showed pathological complete responses) were tested: 66 in the FEC group (28 that showed pathological complete responses) and 59 in the TET group (27 that showed pathological complete responses). The regimen-specific signatures significantly predicted pathological complete response in patients treated with the appropriate regimen (p<0.0001). The FEC predictor had a sensitivity of 96% (27 of 28 patients [95% CI 82-99]), specificity of 66% (25 of 38 patients [50-79]), positive predictive value (PPV) of 68% (27 of 40 patients [52-80]), and negative predictive value (NPV) of 96% (25 of 26 patients [81-99]). The TET predictor had a sensitivity of 93% (25 of 27 patients [77-98]), specificity 69% (22 of 32 patients [51-82]), PPV of 71% (25 of 35 patients [55-84]), and NPV of 92% (22 of 24 patients [74-98]). Analysis of tumour size, grade, nodal status, age, and regimen-specific signatures showed that the genomic signatures were the only independent variables predicting pathological complete response at p<0.01. Selection of patients with these signatures would increase the proportion of patients with pathological complete responses from 44% to around 70% in the patients studied here. INTERPRETATION We have validated the use of regimen-specific drug sensitivity signatures in the context of a multicentre randomised trial. The high NPV of both signatures may allow early selection of patients with breast cancer who should be considered for trials with new drugs.


Journal of Clinical Oncology | 2003

Final Results of a Randomized Phase III Trial Comparing Cyclophosphamide, Epirubicin, and Fluorouracil With a Dose-Intensified Epirubicin and Cyclophosphamide + Filgrastim as Neoadjuvant Treatment in Locally Advanced Breast Cancer: An EORTC-NCIC-SAKK Multicenter Study

Patrick Therasse; Louis Mauriac; Marzena Welnicka-Jaskiewicz; Peter F. Bruning; Tanja Cufer; Hervé Bonnefoi; E. Tomiak; Kathleen I. Pritchard; Anne Hamilton; Martine Piccart

PURPOSE To compare the efficacy of a standard anthracycline-based regimen to a dose-intensified anthracycline regimen in locally advanced breast cancer. PATIENTS AND METHODS Locally advanced breast cancer patients were randomly assigned onto a study comparing cyclophosphamide (C; 75 mg/m(2) orally days 1 to 14), epirubicin (E; 60 mg/m(2) intravenously [IV] days 1, 8), and fluorouracil (F; 500 mg/m(2) IV days 1, 8) six cycles every 28 days versus E (120 mg/m(2) IV day 1), C (830 mg/m(2) IV day 1), and granulocyte colony-stimulating factor (filgrastim; 5 micro g/kg/d subcutaneously days 2 to 13) six cycles every 14 days. The study was designed to detect a 15% improvement; that is, from 50% to 65% in median progression-free survival (PFS) in favor of the dose-intensified regimen. RESULTS A total of 448 patients were enrolled over a period of 3 years. The median dose intensity delivered for C and E reached, respectively, 85% and 87% of that planned in the CEF arm and 96% and 95% of that planned in the EC arm. The dose-intensified arm was slightly more emetogenic and generated more grade 3 to 4 anemia but less febrile neutropenia episodes. After a median follow-up of 5.5 years, 277 events have been reported. The median PFS was 34 and 33.7 months for CEF and EC, respectively (P =.68), and the 5-year survival rate was 53% and 51% for CEF and EC, respectively (P =.94). CONCLUSION Dose-intensified EC does not provide a measurable therapeutic benefit over CEF as neoadjuvant chemotherapy for unselected locally advanced breast cancer patients.


Nature Reviews Clinical Oncology | 2015

Precision medicine for metastatic breast cancer—limitations and solutions

Monica Arnedos; Cécile Vicier; Sherene Loi; Celine Lefebvre; Stefan Michiels; Hervé Bonnefoi; Fabrice Andre

The development of precision medicine for the management of metastatic breast cancer is an appealing concept; however, major scientific and logistical challenges hinder its implementation in the clinic. The identification of driver mutational events remains the biggest challenge, because, with the few exceptions of ER, HER2, PIK3CA and AKT1, no validated oncogenic drivers of breast cancer exist. The development of bioinformatic tools to help identify driver mutations, together with assessment of pathway activation and dependency should help resolve this issue in the future. The occurrence of secondary resistance, such as ESR1 mutations, following endocrine therapy poses a further challenge. Ultra-deep sequencing and monitoring of circulating tumour DNA (ctDNA) could permit early detection of the genetic events underlying resistance and inform on combination therapy approaches. Beside these scientific challenges, logistical and operational issues are a major limitation to the development of precision medicine. For example, the low incidence of most candidate genomic alterations hinders randomized trials, as the number of patients to be screened would be too high. We discuss these limitations and the solutions, which include scaling-up the number of patients screened for identifying a genomic alteration, the clustering of genomic alterations into pathways, and the development of personalized medicine trials.


Lancet Oncology | 2011

TP53 status for prediction of sensitivity to taxane versus non-taxane neoadjuvant chemotherapy in breast cancer (EORTC 10994/BIG 1-00): a randomised phase 3 trial

Hervé Bonnefoi; Martine Piccart; Jan Bogaerts; Louis Mauriac; Pierre Fumoleau; Etienne Brain; Thierry Petit; Philippe Rouanet; Jacek Jassem; Emmanuel Blot; Khalil Zaman; Tanja Cufer; Alain Lortholary; Elisabet Lidbrink; Sylvie André; Saskia Litière; Lissandra Dal Lago; Véronique Becette; David Cameron; Jonas Bergh; Richard Iggo

BACKGROUND TP53 has a crucial role in the DNA damage response. We therefore tested the hypothesis that taxanes confer a greater advantage than do anthracyclines on breast cancers with mutated TP53 than in those with wild-type TP53. METHODS In an open-label, phase 3 study, women (age <71 years) with locally advanced, inflammatory, or large operable breast cancers were randomly assigned in a 1:1 ratio to either a standard anthracycline regimen (six cycles of intravenous fluorouracil 500 mg/m², epirubicin 100 mg/m², and cyclophosphamide 500 mg/m² every 21 days [FEC100], or fluorouracil 600 mg/m², epirubicin 75 mg/m², cyclophosphamide 900 mg/m² [tailored FEC] starting on day 1 and then every 21 days) or a taxane-based regimen (three cycles of docetaxel 100 mg/m², intravenously infused over 1 h on day 1 every 21 days, followed by three cycles of intravenous epirubicin 90 mg/m² and docetaxel 75 mg/m² on day 1 every 21 days [T-ET]) at 42 centres in Europe. Randomisation was by use of a minimisation method that stratified patients by institution and initial tumour stage. The primary endpoint was progression-free survival (PFS) according to TP53 status. Analysis was by intention to treat. This is the final analysis of this trial. The study is registered with ClinicalTrials.gov, number NCT00017095. FINDINGS 928 patients were enrolled in the FEC group and 928 in the T-ET group. TP53 status was not assessable for 183 (20%) patients in the FEC group and 204 (22%) patients in the T-ET group mainly because of low tumour-cell content in the biopsy. 361 primary endpoint events were recorded in the FEC group and 314 in the T-ET group. In patients with TP53-mutated tumours, 5-year PFS was 59·5% (95% CI 53·4-65·1) in the T-ET group (n=326) and 55·3% (49·2-60·9) in the FEC group (n=318; hazard ratio 0·84, 98% CI 0·63-1·14; p=0·17). In patients with TP53 wild-type tumours, 5-year PFS was 66·8% (95% CI 61·4-71·6) in the T-ET group (n=398) and 64·7% (59·6-69·4) in the FEC group (n=427; 0·89, 98% CI 0·68-1·18; p=0·35). For all patients, irrespective of TP53 status, 5-year PFS was 65·1% (95% CI 61·6-68·3) in the T-ET group and 60·8% (57·3-64·2) in the FEC group (0·85, 98% CI 0·71-1·02; p=0·035). At the sites using FEC100 versus T-ET, the most common grade 3 or 4 adverse events were febrile neutropenia (75 [9%] of 803 vs 173 [21%] of 809, respectively), and neutropenia (653 [81%] vs 730 [90%], respectively). At the sites using tailored FEC versus T-ET, the most common grade 3 or 4 adverse events were febrile neutropenia (ten [8%] of 118 vs 26 [22%] of 116, respectively), and neutropenia (100 [85%] vs 115 [99%], respectively). Two patients died of toxicity during or within 30 days of chemotherapy completion and without disease relapse (one in each group). INTERPRETATION Although TP53 status was prognostic for overall survival, it was not predictive of preferential sensitivity to taxanes. TP53 status tested by use of the yeast assay in this patient population cannot be used to select patients for an anthracycline-based chemotherapy versus a taxane-based chemotherapy. FUNDING US National Cancer Institute, La Ligue Nationale Contre le Cancer, European Union, Pharmacia, and Sanofi-Aventis.


Annals of Oncology | 2017

De-escalating and escalating treatments for early-stage breast cancer: the St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017

Giuseppe Curigliano; Harold J. Burstein; Michael Gnant; Peter Dubsky; Sibylle Loibl; M. Colleoni; Meredith M. Regan; Martine Piccart-Gebhart; H.-J. Senn; Beat Thürlimann; Fabrice Andre; José Baselga; Jonas Bergh; Hervé Bonnefoi; S Y Brucker; Fatima Cardoso; Lisa A. Carey; Eva Ciruelos; Jack Cuzick; Carsten Denkert; A. Di Leo; Bent Ejlertsen; Prudence A. Francis; Galimberti; Judy Garber; B Gulluoglu; Pamela J. Goodwin; Nadia Harbeck; Daniel F. Hayes; C-S Huang

The 15th St. Gallen International Breast Cancer Conference 2017 in Vienna, Austria reviewed substantial new evidence on loco-regional and systemic therapies for early breast cancer. Treatments were assessed in light of their intensity, duration and side-effects, seeking where appropriate to escalate or de-escalate therapies based on likely benefits as predicted by tumor stage and tumor biology. The Panel favored several interventions that may reduce surgical morbidity, including acceptance of 2 mm margins for DCIS, the resection of residual cancer (but not baseline extent of cancer) in women undergoing neoadjuvant therapy, acceptance of sentinel node biopsy following neoadjuvant treatment of many patients, and the preference for neoadjuvant therapy in HER2 positive and triple-negative, stage II and III breast cancer. The Panel favored escalating radiation therapy with regional nodal irradiation in high-risk patients, while encouraging omission of boost in low-risk patients. The Panel endorsed gene expression signatures that permit avoidance of chemotherapy in many patients with ER positive breast cancer. For women with higher risk tumors, the Panel escalated recommendations for adjuvant endocrine treatment to include ovarian suppression in premenopausal women, and extended therapy for postmenopausal women. However, low-risk patients can avoid these treatments. Finally, the Panel recommended bisphosphonate use in postmenopausal women to prevent breast cancer recurrence. The Panel recognized that recommendations are not intended for all patients, but rather to address the clinical needs of the majority of common presentations. Individualization of adjuvant therapy means adjusting to the tumor characteristics, patient comorbidities and preferences, and managing constraints of treatment cost and access that may affect care in both the developed and developing world.

Collaboration


Dive into the Hervé Bonnefoi's collaboration.

Top Co-Authors

Avatar

David Cameron

Western General Hospital

View shared research outputs
Top Co-Authors

Avatar

Martine Piccart

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Bogaerts

European Organisation for Research and Treatment of Cancer

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Debled

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar

Thierry Petit

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge