Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hervé Seligmann is active.

Publication


Featured researches published by Hervé Seligmann.


Current Opinion in Microbiology | 2016

Unifying view of stem-loop hairpin RNA as origin of current and ancient parasitic and non-parasitic RNAs, including in giant viruses.

Hervé Seligmann; Didier Raoult

Putatively, stem-loop RNA hairpins explain networks of selfish elements and RNA world remnants. Their genomic density increases with intracellular lifestyle, especially when comparing giant viruses and their virophages. RNA protogenomes presumably templated for mRNAs and self-replicating stem-loops, ancestors of modern genes and parasitic sequences, including tRNAs and rRNAs. Primary and secondary structure analyses suggest common ancestry for t/rRNAs and parasitic RNAs, parsimoniously link diverse RNA metabolites (replication origins, tRNAs, ribozymes, riboswitches, miRNAs and rRNAs) to parasitic RNAs (ribosomal viroids, Rickettsia repeated palindromic elements (RPE), stem-loop hairpins in giant viruses, their virophages, and transposable retrovirus-derived elements). Results indicate ongoing genesis of small RNA metabolites, and common ancestry or similar genesis for rRNA and retroviral sequences. Assuming functional integration of modular duplicated RNA hairpins evolutionarily unifies diverse molecules, postulating stem-loop hairpin RNAs as origins of genetic innovation, ancestors of rRNAs, retro- and Mimivirus sequences, and cells.


BioSystems | 2015

Phylogeny of genetic codes and punctuation codes within genetic codes.

Hervé Seligmann

Punctuation codons (starts, stops) delimit genes, reflect translation apparatus properties. Most codon reassignments involve punctuation. Here two complementary approaches classify natural genetic codes: (A) properties of amino acids assigned to codons (classical phylogeny), coding stops as X (A1, antitermination/suppressor tRNAs insert unknown residues), or as gaps (A2, no translation, classical stop); and (B) considering only punctuation status (start, stop and other codons coded as -1, 0 and 1 (B1); 0, -1 and 1 (B2, reflects ribosomal translational dynamics); and 1, -1, and 0 (B3, starts/stops as opposites)). All methods separate most mitochondrial codes from most nuclear codes; Gracilibacteria consistently cluster with metazoan mitochondria; mitochondria co-hosted with chloroplasts cluster with nuclear codes. Method A1 clusters the euplotid nuclear code with metazoan mitochondria; A2 separates euplotids from mitochondria. Firmicute bacteria Mycoplasma/Spiroplasma and Protozoan (and lower metazoan) mitochondria share codon-amino acid assignments. A1 clusters them with mitochondria, they cluster with the standard genetic code under A2: constraints on amino acid ambiguity versus punctuation-signaling produced the mitochondrial versus bacterial versions of this genetic code. Punctuation analysis B2 converges best with classical phylogenetic analyses, stressing the need for a unified theory of genetic code punctuation accounting for ribosomal constraints.


Mitochondrial DNA | 2015

Sharp switches between regular and swinger mitochondrial replication: 16S rDNA systematically exchanging nucleotides A T+C G in the mitogenome of Kamimuria wangi

Hervé Seligmann

Abstract Swinger DNAs are sequences whose homology with known sequences is detected only by assuming systematic exchanges between nucleotides. Nine symmetric (X<->Y, i.e. A<->C) and fourteen asymmetric (X->Y->Z, i.e. A->C->G) exchanges exist. All swinger DNA previously detected in GenBank follow the A<->T+C<->G exchange, while mitochondrial swinger RNAs distribute among different swinger types. Here different alignment criteria detect 87 additional swinger mitochondrial DNAs (86 from insects), including the first swinger gene embedded within a complete genome, corresponding to the mitochondrial 16S rDNA of the stonefly Kamimuria wangi. Other Kamimuria mt genome regions are “regular”, stressing unanswered questions on (a) swinger polymerization regulation; (b) swinger 16S rDNA functions; and (c) specificity to rDNA, in particular 16S rDNA. Sharp switches between regular and swinger replication, together with previous observations on swinger transcription, suggest that swinger replication might be due to a switch in polymerization mode of regular polymerases and the possibility of swinger-encoded information, predicted in primordial genes such as rDNA.


Computational and structural biotechnology journal | 2016

Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

Hervé Seligmann

Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNAs protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.


BioSystems | 2016

Systematically frameshifting by deletion of every 4th or 4th and 5th nucleotides during mitochondrial transcription: RNA self-hybridization regulates delRNA expression.

Hervé Seligmann

In mitochondria, secondary structures punctuate post-transcriptional RNA processing. Recently described transcripts match the human mitogenome after systematic deletions of every 4th, respectively every 4th and 5th nucleotides, called delRNAs. Here I explore predicted stem-loop hairpin formation by delRNAs, and their associations with delRNA transcription and detected peptides matching their translation. Despite missing 25, respectively 40% of the nucleotides in the original sequence, del-transformed sequences form significantly more secondary structures than corresponding randomly shuffled sequences, indicating biological function, independently of, and in combination with, previously detected delRNA and thereof translated peptides. Self-hybridization decreases delRNA abundances, indicating downregulation. Systematic deletions of the human mitogenome reveal new, unsuspected coding and structural informations.


Journal of Theoretical Biology | 2016

Swinger RNA self-hybridization and mitochondrial non-canonical swinger transcription, transcription systematically exchanging nucleotides.

Hervé Seligmann

Stem-loop hairpins punctuate mitochondrial post-transcriptional processing. Regulation of mitochondrial swinger transcription, transcription producing RNAs matching the mitogenome only assuming systematic exchanges between nucleotides (23 bijective transformations along 9 symmetric exchanges X<>Y, e.g. A<>G, and 14 asymmetric exchanges X>Y>Z>X, e.g. A>G>C>A) remains unknown. Does swinger RNA self-hybridization regulate swinger, as regular, transcription? Groups of 8 swinger transformations share canonical self-hybridization properties within each group, group 0 includes identity (regular) transcription. The human mitogenome has more stem-loop hairpins than randomized sequences for all groups. Group 2 transformations reveal complementarity of the light strand replication origin (OL) loop and a neighboring tRNA gene, detecting the longtime presumed OL/tRNA homology. Non-canonical G=U pairings in hairpins increases with swinger RNA detection. These results confirm biological relevancy of swinger-transformed DNA/RNA, independently of, and in combination with, previously detected swinger DNA/RNA and swinger peptides. Swinger-transformed mitogenomes include unsuspected multilayered information.


Journal of Theoretical Biology | 2014

Species radiation by DNA replication that systematically exchanges nucleotides

Hervé Seligmann


BioSystems | 2014

Mitochondrial swinger replication: DNA replication systematically exchanging nucleotides and short 16S ribosomal DNA swinger inserts.

Hervé Seligmann


Journal of Theoretical Biology | 2015

Codon expansion and systematic transcriptional deletions produce tetra-, pentacoded mitochondrial peptides.

Hervé Seligmann


BioSystems | 2016

Translation of mitochondrial swinger RNAs according to tri-, tetra- and pentacodons

Hervé Seligmann

Collaboration


Dive into the Hervé Seligmann's collaboration.

Top Co-Authors

Avatar

Didier Raoult

Aix-Marseille University

View shared research outputs
Researchain Logo
Decentralizing Knowledge