Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hervé Tettelin is active.

Publication


Featured researches published by Hervé Tettelin.


Nature | 2003

The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria

Timothy D. Read; Scott N. Peterson; Nicolas J. Tourasse; Les W. Baillie; Ian T. Paulsen; Karen E. Nelson; Hervé Tettelin; Derrick E. Fouts; Jonathan A. Eisen; Steven R. Gill; E. Holtzapple; Ole Andreas Økstad; Erlendur Helgason; Jennifer Rilstone; Martin Wu; James F. Kolonay; Maureen J. Beanan; Robert J. Dodson; Lauren M. Brinkac; Michelle L. Gwinn; Robert T. DeBoy; Ramana Madpu; Sean C. Daugherty; A. Scott Durkin; Daniel H. Haft; William C. Nelson; Jeremy Peterson; Mihai Pop; Hoda Khouri; Diana Radune

Bacillus anthracis is an endospore-forming bacterium that causes inhalational anthrax. Key virulence genes are found on plasmids (extra-chromosomal, circular, double-stranded DNA molecules) pXO1 (ref. 2) and pXO2 (ref. 3). To identify additional genes that might contribute to virulence, we analysed the complete sequence of the chromosome of B. anthracis Ames (about 5.23 megabases). We found several chromosomally encoded proteins that may contribute to pathogenicity—including haemolysins, phospholipases and iron acquisition functions—and identified numerous surface proteins that might be important targets for vaccines and drugs. Almost all these putative chromosomal virulence and surface proteins have homologues in Bacillus cereus, highlighting the similarity of B. anthracis to near-neighbours that are not associated with anthrax. By performing a comparative genome hybridization of 19 B. cereus and Bacillus thuringiensis strains against a B. anthracis DNA microarray, we confirmed the general similarity of chromosomal genes among this group of close relatives. However, we found that the gene sequences of pXO1 and pXO2 were more variable between strains, suggesting plasmid mobility in the group. The complete sequence of B. anthracis is a step towards a better understanding of anthrax pathogenesis.


Science | 2007

Widespread Lateral Gene Transfer from Intracellular Bacteria to Multicellular Eukaryotes

Julie C. Dunning Hotopp; Michael E. Clark; Deodoro C. S. G. Oliveira; Jeremy M. Foster; Peter U. Fischer; Mónica C. Muñoz Torres; Jonathan D. Giebel; Nikhil Kumar; Nadeeza Ishmael; Shiliang Wang; Jessica Ingram; Rahul V. Nene; Jessica Shepard; Jeffrey Tomkins; Stephen Richards; David J. Spiro; Elodie Ghedin; Barton E. Slatko; Hervé Tettelin; John H. Werren

Although common among bacteria, lateral gene transfer—the movement of genes between distantly related organisms—is thought to occur only rarely between bacteria and multicellular eukaryotes. However, the presence of endosymbionts, such as Wolbachia pipientis, within some eukaryotic germlines may facilitate bacterial gene transfers to eukaryotic host genomes. We therefore examined host genomes for evidence of gene transfer events from Wolbachia bacteria to their hosts. We found and confirmed transfers into the genomes of four insect and four nematode species that range from nearly the entire Wolbachia genome (>1 megabase) to short (<500 base pairs) insertions. Potential Wolbachia-to-host transfers were also detected computationally in three additional sequenced insect genomes. We also show that some of these inserted Wolbachia genes are transcribed within eukaryotic cells lacking endosymbionts. Therefore, heritable lateral gene transfer occurs into eukaryotic hosts from their prokaryote symbionts, potentially providing a mechanism for acquisition of new genes and functions.


Applied and Environmental Microbiology | 2006

Multilocus Sequence Typing System for the Endosymbiont Wolbachia pipientis

Laura Baldo; Julie C. Dunning Hotopp; Keith A. Jolley; Seth R. Bordenstein; Sarah Biber; Rhitoban Ray Choudhury; Cheryl Y. Hayashi; Martin C. J. Maiden; Hervé Tettelin; John H. Werren

ABSTRACT The eubacterial genus Wolbachia comprises one of the most abundant groups of obligate intracellular bacteria, and it has a host range that spans the phyla Arthropoda and Nematoda. Here we developed a multilocus sequence typing (MLST) scheme as a universal genotyping tool for Wolbachia. Internal fragments of five ubiquitous genes (gatB, coxA, hcpA, fbpA, and ftsZ) were chosen, and primers that amplified across the major Wolbachia supergroups found in arthropods, as well as other divergent lineages, were designed. A supplemental typing system using the hypervariable regions of the Wolbachia surface protein (WSP) was also developed. Thirty-seven strains belonging to supergroups A, B, D, and F obtained from singly infected hosts were characterized by using MLST and WSP. The number of alleles per MLST locus ranged from 25 to 31, and the average levels of genetic diversity among alleles were 6.5% to 9.2%. A total of 35 unique allelic profiles were found. The results confirmed that there is a high level of recombination in chromosomal genes. MLST was shown to be effective for detecting diversity among strains within a single host species, as well as for identifying closely related strains found in different arthropod hosts. Identical or similar allelic profiles were obtained for strains harbored by different insect species and causing distinct reproductive phenotypes. Strains with similar WSP sequences can have very different MLST allelic profiles and vice versa, indicating the importance of the MLST approach for strain identification. The MLST system provides a universal and unambiguous tool for strain typing, population genetics, and molecular evolutionary studies. The central database for storing and organizing Wolbachia bacterial and host information can be accessed at http://pubmlst.org/wolbachia/ .


Proceedings of the National Academy of Sciences of the United States of America | 2002

Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae

Hervé Tettelin; Vega Masignani; Michael J. Cieslewicz; Jonathan A. Eisen; Scott N. Peterson; Michael R. Wessels; Ian T. Paulsen; Karen E. Nelson; Immaculada Margarit; Timothy D. Read; Lawrence C. Madoff; Alex M. Wolf; Maureen J. Beanan; Lauren M. Brinkac; Sean C. Daugherty; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Matthew Lewis; Diana Radune; Nadezhda B. Fedorova; David Scanlan; Hoda Khouri; Stephanie Mulligan; Heather A. Carty; Robin T. Cline; Susan Van Aken; John Gill; Maria Scarselli

The 2,160,267 bp genome sequence of Streptococcus agalactiae, the leading cause of bacterial sepsis, pneumonia, and meningitis in neonates in the U.S. and Europe, is predicted to encode 2,175 genes. Genome comparisons among S. agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and the other completely sequenced genomes identified genes specific to the streptococci and to S. agalactiae. These in silico analyses, combined with comparative genome hybridization experiments between the sequenced serotype V strain 2603 V/R and 19 S. agalactiae strains from several serotypes using whole-genome microarrays, revealed the genetic heterogeneity among S. agalactiae strains, even of the same serotype, and provided insights into the evolution of virulence mechanisms.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts

Ian T. Paulsen; Rekha Seshadri; Karen E. Nelson; Jonathan A. Eisen; John F. Heidelberg; Timothy D. Read; Robert J. Dodson; Lowell Umayam; Lauren M. Brinkac; Maureen J. Beanan; Sean C. Daugherty; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; William C. Nelson; Bola Ayodeji; Margaret Kraul; Jyoti Shetty; Joel A. Malek; Susan Van Aken; Steven Riedmuller; Hervé Tettelin; Steven R. Gill; Owen White; David L. Hoover; Luther E. Lindler; Shirley M. Halling; Stephen M. Boyle; Claire M. Fraser

The 3.31-Mb genome sequence of the intracellular pathogen and potential bioterrorism agent, Brucella suis, was determined. Comparison of B. suis with Brucella melitensis has defined a finite set of differences that could be responsible for the differences in virulence and host preference between these organisms, and indicates that phage have played a significant role in their divergence. Analysis of the B. suis genome reveals transport and metabolic capabilities akin to soil/plant-associated bacteria. Extensive gene synteny between B. suis chromosome 1 and the genome of the plant symbiont Mesorhizobium loti emphasizes the similarity between this animal pathogen and plant pathogens and symbionts. A limited repertoire of genes homologous to known bacterial virulence factors were identified.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Complete genome sequence of the Q-fever pathogen Coxiella burnetii.

Rekha Seshadri; Ian T. Paulsen; Jonathan A. Eisen; Timothy D. Read; Karen E. Nelson; William C. Nelson; Naomi L. Ward; Hervé Tettelin; Tanja Davidsen; Maureen J. Beanan; Robert T. DeBoy; Sean C. Daugherty; Lauren M. Brinkac; Ramana Madupu; Robert J. Dodson; Hoda Khouri; K. Lee; Heather A. Carty; David Scanlan; Robert A. Heinzen; Herbert A. Thompson; James E. Samuel; Claire M. Fraser; John F. Heidelberg

The 1,995,275-bp genome of Coxiella burnetii, Nine Mile phase I RSA493, a highly virulent zoonotic pathogen and category B bioterrorism agent, was sequenced by the random shotgun method. This bacterium is an obligate intracellular acidophile that is highly adapted for life within the eukaryotic phagolysosome. Genome analysis revealed many genes with potential roles in adhesion, invasion, intracellular trafficking, host-cell modulation, and detoxification. A previously uncharacterized 13-member family of ankyrin repeat-containing proteins is implicated in the pathogenesis of this organism. Although the lifestyle and parasitic strategies of C. burnetii resemble that of Rickettsiae and Chlamydiae, their genome architectures differ considerably in terms of presence of mobile elements, extent of genome reduction, metabolic capabilities, and transporter profiles. The presence of 83 pseudogenes displays an ongoing process of gene degradation. Unlike other obligate intracellular bacteria, 32 insertion sequences are found dispersed in the chromosome, indicating some plasticity in the C. burnetii genome. These analyses suggest that the obligate intracellular lifestyle of C. burnetii may be a relatively recent innovation.


Journal of Bacteriology | 2003

Complete Genome Sequence of the Oral Pathogenic Bacterium Porphyromonas gingivalis Strain W83

Karen E. Nelson; Robert D. Fleischmann; Robert T. DeBoy; Ian T. Paulsen; Derrick E. Fouts; Jonathan A. Eisen; Sean C. Daugherty; Robert J. Dodson; A. Scott Durkin; Michelle L. Gwinn; Daniel H. Haft; James F. Kolonay; William C. Nelson; Tanya Mason; Luke J. Tallon; Jessica Gray; David Granger; Hervé Tettelin; Hong Dong; Jamie L. Galvin; Margaret J. Duncan; Floyd E. Dewhirst; Claire M. Fraser

The complete 2,343,479-bp genome sequence of the gram-negative, pathogenic oral bacterium Porphyromonas gingivalis strain W83, a major contributor to periodontal disease, was determined. Whole-genome comparative analysis with other available complete genome sequences confirms the close relationship between the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum and the green-sulfur bacteria. Within the CFB phyla, the genomes most similar to that of P. gingivalis are those of Bacteroides thetaiotaomicron and B. fragilis. Outside of the CFB phyla the most similar genome to P. gingivalis is that of Chlorobium tepidum, supporting the previous phylogenetic studies that indicated that the Chlorobia and CFB phyla are related, albeit distantly. Genome analysis of strain W83 reveals a range of pathways and virulence determinants that relate to the novel biology of this oral pathogen. Among these determinants are at least six putative hemagglutinin-like genes and 36 previously unidentified peptidases. Genome analysis also reveals that P. gingivalis can metabolize a range of amino acids and generate a number of metabolic end products that are toxic to the human host or human gingival tissue and contribute to the development of periodontal disease.


Journal of Bacteriology | 2007

Genome Sequence of Avery's Virulent Serotype 2 Strain D39 of Streptococcus pneumoniae and Comparison with That of Unencapsulated Laboratory Strain R6

Joel A. Lanie; Wai-Leung Ng; Krystyna M. Kazmierczak; Tiffany M. Andrzejewski; Tanja Davidsen; Kyle J. Wayne; Hervé Tettelin; John I. Glass; Malcolm E. Winkler

Streptococcus pneumoniae (pneumococcus) is a leading human respiratory pathogen that causes a variety of serious mucosal and invasive diseases. D39 is an historically important serotype 2 strain that was used in experiments by Avery and coworkers to demonstrate that DNA is the genetic material. Although isolated nearly a century ago, D39 remains extremely virulent in murine infection models and is perhaps the strain used most frequently in current studies of pneumococcal pathogenesis. To date, the complete genome sequences have been reported for only two S. pneumoniae strains: TIGR4, a recent serotype 4 clinical isolate, and laboratory strain R6, an avirulent, unencapsulated derivative of strain D39. We report here the genome sequences and new annotation of two different isolates of strain D39 and the corrected sequence of strain R6. Comparisons of these three related sequences allowed deduction of the likely sequence of the D39 progenitor and mutations that arose in each isolate. Despite its numerous repeated sequences and IS elements, the serotype 2 genome has remained remarkably stable during cultivation, and one of the D39 isolates contains only five relatively minor mutations compared to the deduced D39 progenitor. In contrast, laboratory strain R6 contains 71 single-base-pair changes, six deletions, and four insertions and has lost the cryptic pDP1 plasmid compared to the D39 progenitor strain. Many of these mutations are in or affect the expression of genes that play important roles in regulation, metabolism, and virulence. The nature of the mutations that arose spontaneously in these three strains, the relative global transcription patterns determined by microarray analyses, and the implications of the D39 genome sequences to studies of pneumococcal physiology and pathogenesis are presented and discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium

Jonathan A. Eisen; Karen E. Nelson; Ian T. Paulsen; John F. Heidelberg; Martin Wu; Robert J. Dodson; Robert T. DeBoy; Michelle L. Gwinn; William C. Nelson; Daniel H. Haft; Erin Hickey; Jeremy Peterson; A. Scott Durkin; James L. Kolonay; Fan Yang; Ingeborg Holt; Lowell Umayam; Tanya Mason; Michael Brenner; Terrance Shea; Debbie S. Parksey; William C. Nierman; Tamara Feldblyum; Cheryl L. Hansen; M. Brook Craven; Diana Radune; Jessica Vamathevan; Hoda Khouri; Owen White; Tanja M. Gruber

The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.


PLOS Biology | 2004

Genomic Insights into Methanotrophy: The Complete Genome Sequence of Methylococcus capsulatus (Bath)

Naomi L. Ward; Øivind Larsen; James Sakwa; Live J. Bruseth; Hoda Khouri; A. Scott Durkin; George Dimitrov; Lingxia Jiang; David Scanlan; Katherine H. Kang; Matthew Lewis; Karen E. Nelson; Barbara A. Methé; Martin Wu; John F. Heidelberg; Ian T. Paulsen; Derrick E. Fouts; Jacques Ravel; Hervé Tettelin; Qinghu Ren; Timothy D. Read; Robert T. DeBoy; Rekha Seshadri; Harald B. Jensen; Nils-Kåre Birkeland; William C. Nelson; Robert J. Dodson; Svenn Helge Grindhaug; Ingeborg Holt; Ingvar Eidhammer

Methanotrophs are ubiquitous bacteria that can use the greenhouse gas methane as a sole carbon and energy source for growth, thus playing major roles in global carbon cycles, and in particular, substantially reducing emissions of biologically generated methane to the atmosphere. Despite their importance, and in contrast to organisms that play roles in other major parts of the carbon cycle such as photosynthesis, no genome-level studies have been published on the biology of methanotrophs. We report the first complete genome sequence to our knowledge from an obligate methanotroph, Methylococcus capsulatus (Bath), obtained by the shotgun sequencing approach. Analysis revealed a 3.3-Mb genome highly specialized for a methanotrophic lifestyle, including redundant pathways predicted to be involved in methanotrophy and duplicated genes for essential enzymes such as the methane monooxygenases. We used phylogenomic analysis, gene order information, and comparative analysis with the partially sequenced methylotroph Methylobacterium extorquens to detect genes of unknown function likely to be involved in methanotrophy and methylotrophy. Genome analysis suggests the ability of M. capsulatus to scavenge copper (including a previously unreported nonribosomal peptide synthetase) and to use copper in regulation of methanotrophy, but the exact regulatory mechanisms remain unclear. One of the most surprising outcomes of the project is evidence suggesting the existence of previously unsuspected metabolic flexibility in M. capsulatus, including an ability to grow on sugars, oxidize chemolithotrophic hydrogen and sulfur, and live under reduced oxygen tension, all of which have implications for methanotroph ecology. The availability of the complete genome of M. capsulatus (Bath) deepens our understanding of methanotroph biology and its relationship to global carbon cycles. We have gained evidence for greater metabolic flexibility than was previously known, and for genetic components that may have biotechnological potential.

Collaboration


Dive into the Hervé Tettelin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William C. Nelson

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert T. DeBoy

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hoda Khouri

J. Craig Venter Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge