Hervé Tricoire
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hervé Tricoire.
BMC Genomics | 2004
Fabrice Girardot; Véronique Monnier; Hervé Tricoire
BackgroundDuring their life, multicellular organisms are challenged with oxidative stress. It is generated by several reactive oxygen species (ROS), may limit lifespan and has been related to several human diseases. ROS can generate a wide variety of defects in many cellular components and thus the response of the organism challenged with oxidative stress may share some features with other stress responses. Conversely, in spite of recent progress, a complete functional analysis of the transcriptional responses to different oxidative stresses in model organisms is still missing. In addition, the functional significance of observed transcriptional changes is still elusive.ResultsWe used oligonucleotide microarrays to address the specificities of transcriptional responses of adult Drosophila to different stresses induced by paraquat and H2O2, two oxidative stressors, and by tunicamycin which induces an endoplasmic reticulum (ER) stress. Both specific and common responses to the three stressors were observed and whole genome functional analysis identified several important classes of stress responsive genes. Within some functional classes, we observed that isozymes do not all behave similarly, which may reflect unsuspected functional specificities. Moreover, genetic experiments performed on a subset of lines bearing mutations in genes identified in microarray experiments showed that a significant number of these mutations may affect resistance of adult Drosophila to oxidative stress.ConclusionsA long term common stress response to paraquat- or H2O2-induced oxidative stresses and ER stress is observed for a significant number of genes. Besides this common response, the unexpected complexity of the stress responses to oxidative and ER stresses in Drosophila, suggest significant specificities in protective properties between genes associated to the same functional classes. According to our functional analysis, a large part of the genome may play a role in protective mechanisms against oxidative stress in Drosophila.
Mechanisms of Development | 1998
Georges Alves; Bernadette Limbourg-Bouchon; Hervé Tricoire; Jeanine Brissard-Zahraoui; Claudie Lamour-Isnard; Denise Busson
The Fused (Fu) serine-threonine kinase and the Suppressor of fused (Su(fu)) product are part of the Hedgehog (Hh) signaling pathway both in embryos and in imaginal discs. In wing imaginal discs, the Hh signal induces Cubitus interruptus (Ci) accumulation and activates patched (ptc) and decapentaplegic (dpp) expression along the anterior/posterior (A/P) boundary. In this paper, we have examined the role of the Fu and Su(fu) proteins in the regulation of Hh target gene expression in wing imaginal discs, by using different classes of fu alleles and an amorphic Su(fu) mutation. We show that, at the A/P boundary, Fu kinase activity is involved in the maintenance of high ptc expression and in the induction of late anterior engrailed (en) expression. These combined effects can account for the modulation of Ci accumulation and for the precise localization of the Dpp morphogen stripe. In contrast, in more anterior cells which do not receive Hh signal, we show that Fu plays a role independent of its kinase function in the regulation of Ci accumulation. In these cells, Fu may be involved in the stabilization of a large protein complex which is probably responsible for the regulation of Ci cleavage and/or targeting to nucleus. We propose that the Fused function is necessary for the activation of full-length Ci and counteracts the negative Su(fu) effect on the pathway, leading to en, ptc and dpp expression.
BMC Genomics | 2006
Fabrice Girardot; Christelle Lasbleiz; Véronique Monnier; Hervé Tricoire
BackgroundDuring the last two decades progress in the genetics of aging in invertebrate models such as C. elegans and D. melanogaster has clearly demonstrated the existence of regulatory pathways that control the rate of aging in these organisms, such as the insulin-like pathway, the Jun kinase pathway and the Sir2 deacetylase pathway. Moreover, it was rapidly shown that some of these pathways are conserved from yeast to humans.In parallel to genetic studies, genomic expression approches have given us significant information on the gene expression modifications that occur during aging either in wild type or long-lived mutant animals. But most of the genomic studies of invertebrate models have been performed so far on whole animals, while several recent studies in mammals have shown that the effects of aging are tissue specific.ResultsWe used oligonucleotide microarrays to address the specificities of transcriptional responses in aging Drosophila in head, thorax or whole body. These fly parts are enriched in transcripts that represent different and complementary sets of genes. We present evidence for both specific and common transcriptional responses during the aging process in these tissues. About half of the genes described as downregulated with age are linked to reproduction and enriched in gonads. Greater downregulation of mitochondrial genes, activation of the JNK pathway and upregulation of proteasome subunits in the thorax of aged flies all suggest that muscle may be particularly sensitive to aging. Simultaneous age-related impairment of synaptic transmission gene expression is observed in fly heads. In addition, a detailed comparison with other microarray data indicates that in aged flies there are significant deviations from the canonical responses to oxidative stress and immune stress.ConclusionOur data demonstrates the advantages and value of regionalized and comparative analysis of gene expression in aging animals. Adding to the age-regulated genes already identified in whole animal studies, it provides lists of new regionalized genes to be studied for their functional role in the aging process. This work also emphasizes the need for such experiments to reveal in greater detail the consequences of the transcriptional modifications induced by aging regulatory pathways.
The Journal of Neuroscience | 2007
Morwena Latouche; Christelle Lasbleiz; Elodie Martin; Véronique Monnier; Thomas Debeir; Annick Mouatt-Prigent; Marie-Paule Muriel; Lydie Morel; Merle Ruberg; Alexis Brice; Giovanni Stevanin; Hervé Tricoire
Spinocerebellar ataxia 7 (SCA7) is a neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the ataxin 7 (ATXN7) protein, a member of a multiprotein complex involved in histone acetylation. We have created a conditional Drosophila model of SCA7 in which expression of truncated ATXN7 (ATXN7T) with a pathogenic polyQ expansion is induced in neurons in adult flies. In this model, mutant ATXN7T accumulated in neuronal intranuclear inclusions containing ubiquitin, the 19S proteasome subunit, and HSP70 (heat shock protein 70), as in patients. Aggregation was accompanied by a decrease in locomotion and lifespan but limited neuronal death. Disaggregation of the inclusions, when expression of expanded ATXN7T was stopped, correlated with improved locomotor function and increased lifespan, suggesting that the pathology may respond to treatment. Lifespan was then used as a quantitative marker in a candidate gene approach to validate the interest of the model and to identify generic modulators of polyQ toxicity and specific modifiers of SCA7. Several molecular pathways identified in this focused screen (proteasome function, unfolded protein stress, caspase-dependent apoptosis, and histone acetylation) were further studied in primary neuronal cultures. Sodium butyrate, a histone deacetylase inhibitor, improved the survival time of the neurons. This model is therefore a powerful tool for studying SCA7 and for the development of potential therapies for polyQ diseases.
Genes to Cells | 2006
Sylvain Brun; Sheila Vidal; Paul T. Spellman; Kuniaki Takahashi; Hervé Tricoire; Bruno Lemaitre
Septic injury triggers a rapid and widespread response in Drosophila adults that involves the up‐regulation of many genes required to combat infection and for wound healing. Genome‐wide expression profiling has already demonstrated that this response is controlled by signaling through the Toll, Imd, JAK‐STAT and JNK pathways. Using oligonucleotide microarrays, we now demonstrate that the MAPKKK Mekk1 regulates a small subset of genes induced by septic injury including Turandot (Tot) stress genes. Our analysis indicates that Tot genes show a complex regulation pattern including signals from both the JAK‐STAT and Imd pathways and Mekk1. Interestingly, Mekk1 flies are resistant to microbial infection but susceptible to paraquat, an inducer of oxidative stress. These results point to a role of Mekk1 in the protection against tissue damage and/or protein degradation and indicate complex interactions between stress and immune pathways in Drosophila.
PLOS Genetics | 2012
Véronique Monnier; Magali Iché-Torres; Michael Rera; Vincent Contremoulins; Céline Guichard; Nathalie Lalevée; Hervé Tricoire; Laurent Perrin
Cardiac aging is a complex process, which is influenced by both environmental and genetic factors. Deciphering the mechanisms involved in heart senescence therefore requires identifying the molecular pathways that are affected by age in controlled environmental and genetic conditions. We describe a functional genomic investigation of the genetic control of cardiac senescence in Drosophila. Molecular signatures of heart aging were identified by differential transcriptome analysis followed by a detailed bio-informatic analysis. This approach implicated the JNK/dJun pathway and the transcription factor Vri/dNFIL3 in the transcription regulatory network involved in cardiac senescence and suggested the possible involvement of oxidative stress (OS) in the aging process. To validate these predictions, we developed a new in vivo assay to analyze heart performance in various contexts of adult heart-specific gene overexpression and inactivation. We demonstrate that, as in mammals, OS plays a central role in cardiac senescence, and we show that pharmacological interventions impinging on OS slow heart senescence. These observations strengthen the idea that cardiac aging is controlled by evolutionarily conserved mechanisms, further validating Drosophila as a model to study cardiac senescence. In addition, we demonstrate that Vri, the ortholog of the vertebrate NFIL3/E4B4 transcription factor, is a major genetic regulator of cardiac aging. Vri overexpression leads to major heart dysfunctions, but its loss of function significantly reduces age-related cardiac dysfunctions. Furthermore, we unambiguously show that the JNK/AP1 pathway, the role of which in cardiac aging in mammals is controversial, is activated during cardiac aging and has a detrimental effect on cardiac senescence. This data-driven functional genomic analysis therefore led to the identification of key components of the Gene Regulatory Network of cardiac aging in Drosophila and may prompt to investigate the involvement of their counterparts in the cardiac aging process in mammals.
Genes to Cells | 2006
Séverine Martin‐Lannerée; Christelle Lasbleiz; Matthieu Sanial; Sylvaine Fouix; Florence Besse; Hervé Tricoire; Anne Plessis
In human, the myeloid leukemia factor 1 (hMLF1) has been shown to be involved in acute leukemia, and mlf related genes are present in many animals. Despite their extensive representation and their good conservation, very little is understood about their function. In Drosophila, dMLF physically interacts with both the transcription regulatory factor DREF and an antagonist of the Hedgehog pathway, Suppressor of Fused, whose over‐expression in the fly suppresses the toxicity induced by polyglutamine. No connection between these data has, however, been established. Here, we show that dmlf is widely and dynamically expressed during fly development. We isolated and analyzed the first dmlf mutants: embryos lacking maternal dmlf product have a low viability with no specific defect, and dmlf‐– adults display weak phenotypes. We monitored dMLF subcellular localization in the fly and cultured cells. We were able to show that, although generally nuclear, dMLF can also be cytoplasmic, depending on the developmental context. Furthermore, two differently spliced variants of dMLF display differential subcellular localization, allowing the identification of regions of dMLF potentially important for its localization. Finally, we demonstrate that dMLF can act developmentally and postdevelopmentally to suppress neurodegeneration and premature aging in a cerebellar ataxia model.
PLOS Genetics | 2012
Spyros Petrakis; Tamás Raskó; Jenny Russ; Ralf P. Friedrich; Martin Stroedicke; Sean Patrick Riechers; Katja Muehlenberg; Angeli Möller; Anita Reinhardt; Arunachalam Vinayagam; Martin H. Schaefer; Michael Boutros; Hervé Tricoire; Miguel A. Andrade-Navarro; Erich E. Wanker
Proteins with long, pathogenic polyglutamine (polyQ) sequences have an enhanced propensity to spontaneously misfold and self-assemble into insoluble protein aggregates. Here, we have identified 21 human proteins that influence polyQ-induced ataxin-1 misfolding and proteotoxicity in cell model systems. By analyzing the protein sequences of these modifiers, we discovered a recurrent presence of coiled-coil (CC) domains in ataxin-1 toxicity enhancers, while such domains were not present in suppressors. This suggests that CC domains contribute to the aggregation- and toxicity-promoting effects of modifiers in mammalian cells. We found that the ataxin-1–interacting protein MED15, computationally predicted to possess an N-terminal CC domain, enhances spontaneous ataxin-1 aggregation in cell-based assays, while no such effect was observed with the truncated protein MED15ΔCC, lacking such a domain. Studies with recombinant proteins confirmed these results and demonstrated that the N-terminal CC domain of MED15 (MED15CC) per se is sufficient to promote spontaneous ataxin-1 aggregation in vitro. Moreover, we observed that a hybrid Pum1 protein harboring the MED15CC domain promotes ataxin-1 aggregation in cell model systems. In strong contrast, wild-type Pum1 lacking a CC domain did not stimulate ataxin-1 polymerization. These results suggest that proteins with CC domains are potent enhancers of polyQ-mediated protein misfolding and aggregation in vitro and in vivo.
Oxidative Medicine and Cellular Longevity | 2015
Alexandra Seguin; Véronique Monnier; Amandine Palandri; Frédéric Bihel; Michael Rera; Martine Schmitt; Jean-Michel Camadro; Hervé Tricoire; Emmanuel Lesuisse
Friedreichs ataxia (FA) is a rare neurodegenerative disease which is very debilitating for the patients who progressively lose their autonomy. The lack of efficient therapeutic treatment of the disease strongly argues for urgent need to search for new active compounds that may stop the progression of the disease or prevent the appearance of the symptoms when the genetic defect is diagnosed early enough. In the present study, we used a yeast strain with a deletion of the frataxin homologue gene as a model of FA cells in a primary screen of two chemical libraries, a fraction of the French National Chemical Library (5500 compounds) and the Prestwick collection (880 compounds). We ran a secondary screen on Drosophila melanogaster flies expressing reduced levels of frataxin during larval development. Half of the compounds selected in yeast appeared to be active in flies in this developmental paradigm, and one of the two compounds with highest activities in this assay partially rescued the heart dilatation phenotype resulting from heart specific depletion of frataxin. The unique complementarity of these two frataxin-deficient models, unicellular and multicellular, appears to be very efficient to select new compounds with improved selectivity, bringing significant perspectives towards improvements in FA therapy.
Journal of Huntington's disease | 2015
Raheleh Heidari; Véronique Monnier; Elodie Martin; Hervé Tricoire
BACKGROUND Huntingtons disease (HD) is a Polyglutamine disease caused by the presence of CAG repeats in the first exon of Huntingtin (Htt), a large protein with multiple functions. In addition to neurodegeneration of specific brain regions, notably the striatum, HD also shows alterations in peripheral tissues, such as the heart, skeletal muscles or peripheral endocrine glands. Mutant Huntingtin (mHtt)-driven mitochondrial impairment may underlie some of the CNS and peripheral tissues dysfunctions, especially in tissues with high energy demand such as the heart. OBJECTIVE The aim of this study is to characterize two new inducible Drosophila HD heart models and to assay the therapeutic potential of methylene blue in these HD models. METHODS We report the construction of inducible Drosophila HD heart models, expressing two Nter fragments of the protein encompassing either exon 1 or the first 171 amino acids and the characterization of heart phenotypes in vivo. RESULTS We show that both mHtt fragments are able to impair fly cardiac function with different characteristics. Additionally, expression of mHtt, which was limited to adulthood only, leads to mild heart impairment, as opposed to a strong and age-dependent phenotype observed when mHtt expression was driven during both developmental and adult stages. We report that treatment with methylene blue (MB), a protective compound in mitochondria-related diseases, partially protects the flys heart against mHtt-induced toxicity, but does not rescue neuronal or glial phenotypes in other fly models of HD. This may be linked to its low penetration through the flys blood-brain barrier. CONCLUSIONS Our data suggest that improvement of mitochondrial function by MB, or related compounds, could be an efficient therapeutic strategy to prevent cardiac failure in HD patients.