Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hervé Vanderschuren is active.

Publication


Featured researches published by Hervé Vanderschuren.


Nucleic Acids Research | 2006

Molecular characterization of geminivirus-derived small RNAs in different plant species

Rashid Akbergenov; Azeddine Si-Ammour; Todd Blevins; Imran Amin; Claudia Kutter; Hervé Vanderschuren; Peng Zhang; Wilhelm Gruissem; Frederick Meins; Thomas Hohn; Mikhail M. Pooggin

DNA geminiviruses are thought to be targets of RNA silencing. Here, we characterize small interfering (si) RNAs—the hallmarks of silencing—associated with Cabbage leaf curl begomovirus in Arabidopsis and African cassava mosaic begomovirus in Nicotiana benthamiana and cassava. We detected 21, 22 and 24 nt siRNAs of both polarities, derived from both the coding and the intergenic regions of these geminiviruses. Genetic evidence showed that all the 24 nt and a substantial fraction of the 22 nt viral siRNAs are generated by the dicer-like proteins DCL3 and DCL2, respectively. The viral siRNAs were 5′ end phosphorylated, as shown by phosphatase treatments, and methylated at the 3′-nucleotide, as shown by HEN1 miRNA methylase-dependent resistance to β-elimination. Similar modifications were found in all types of endogenous and transgene-derived siRNAs tested, but not in a major fraction of siRNAs from a cytoplasmic RNA tobamovirus. We conclude that several distinct silencing pathways are involved in DNA virus-plant interactions.


Annual Review of Plant Biology | 2011

The BioCassava Plus Program: Biofortification of Cassava for Sub-Saharan Africa

Richard T. Sayre; John R. Beeching; Edgar B. Cahoon; Chiedozie Egesi; Claude M. Fauquet; John K. Fellman; Martin Fregene; Wilhelm Gruissem; Sally Mallowa; Mark Manary; Bussie Maziya-Dixon; Ada Mbanaso; Daniel P. Schachtman; Dimuth Siritunga; Nigel J. Taylor; Hervé Vanderschuren; Peng Zhang

More than 250 million Africans rely on the starchy root crop cassava (Manihot esculenta) as their staple source of calories. A typical cassava-based diet, however, provides less than 30% of the minimum daily requirement for protein and only 10%-20% of that for iron, zinc, and vitamin A. The BioCassava Plus (BC+) program has employed modern biotechnologies intended to improve the health of Africans through the development and delivery of genetically engineered cassava with increased nutrient (zinc, iron, protein, and vitamin A) levels. Additional traits addressed by BioCassava Plus include increased shelf life, reductions in toxic cyanogenic glycosides to safe levels, and resistance to viral disease. The program also provides incentives for the adoption of biofortified cassava. Proof of concept was achieved for each of the target traits. Results from field trials in Puerto Rico, the first confined field trials in Nigeria to use genetically engineered organisms, and ex ante impact analyses support the efficacy of using transgenic strategies for the biofortification of cassava.


Plant Molecular Biology | 2009

Dose-dependent RNAi-mediated geminivirus resistance in the tropical root crop cassava.

Hervé Vanderschuren; Adrian Alder; Peng Zhang; Wilhelm Gruissem

Cassava mosaic disease is a major constraint for cassava production in Africa, resulting in significant economic losses. We have engineered transgenic cassava with resistance to African cassava mosaic virus (ACMV), by expressing ACMV AC1-homologous hairpin double-strand RNAs. Transgenic cassava lines with high levels of AC1-homologous small RNAs have ACMV immunity with increasing viral load and different inoculation methods. We report a correlation between the expression of the AC1-homologous small RNAs and the ACMV resistance of the transgenic cassava lines. Characterization of the small RNAs revealed that only some of the hairpin-derived small RNAs fall into currently known small interfering RNA classes in plants. The method is scalable to stacking by targeting multiple virus isolates with additional hairpins.


Plant Journal | 2011

iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration.

Judith Owiti; Jonas Grossmann; Peter Gehrig; Christophe Dessimoz; Christophe Laloi; Maria Benn Hansen; Wilhelm Gruissem; Hervé Vanderschuren

The short storage life of harvested cassava roots is an important constraint that limits the full potential of cassava as a commercial food crop in developing countries. We investigated the molecular changes during physiological deterioration of cassava root after harvesting using isobaric tags for relative and absolute quantification (iTRAQ) of proteins in soluble and non-soluble fractions prepared during a 96 h post-harvest time course. Combining bioinformatic approaches to reduce information redundancy for unsequenced or partially sequenced plant species, we established a comprehensive proteome map of the cassava root and identified quantitatively regulated proteins. Up-regulation of several key proteins confirmed that physiological deterioration of cassava root after harvesting is an active process, with 67 and 170 proteins, respectively, being up-regulated early and later after harvesting. This included regulated proteins that had not previously been associated with physiological deterioration after harvesting, such as linamarase, glutamic acid-rich protein, hydroxycinnamoyl transferase, glycine-rich RNA binding protein, β-1,3-glucanase, pectin methylesterase, maturase K, dehydroascorbate reductase, allene oxide cyclase, and proteins involved in signal pathways. To confirm the regulation of these proteins, activity assays were performed for selected enzymes. Together, our results show that physiological deterioration after harvesting is a highly regulated complex process involving proteins that are potential candidates for biotechnology approaches to reduce such deterioration.


Nature Protocols | 2009

Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava

Simon E. Bull; Judith Owiti; M. Niklaus; John R. Beeching; Wilhelm Gruissem; Hervé Vanderschuren

Agrobacterium-mediated transformation of friable embryogenic calli (FEC) is the most widely used method to generate transgenic cassava plants. However, this approach has proven to be time-consuming and can lead to changes in the morphology and quality of FEC, influencing regeneration capacity and plant health. Here we present a comprehensive, reliable and improved protocol, taking ∼6 months, that optimizes Agrobacterium-mediated transformation of FEC from cassava model cultivar TMS60444. We cocultivate the FEC with Agrobacterium directly on the propagation medium and adopt the extensive use of plastic mesh for easy and frequent transfer of material to new media. This minimizes stress to the FEC cultures and permits a finely balanced control of nutrients, hormones and antibiotics. A stepwise increase in antibiotic concentration for selection is also used after cocultivation with Agrobacterium to mature the transformed FEC before regeneration. The detailed information given here for each step should enable successful implementation of this technology in other laboratories, including those being established in developing countries where cassava is a staple crop.


Proceedings of the National Academy of Sciences of the United States of America | 2012

High-throughput genomic sequencing of cassava bacterial blight strains identifies conserved effectors to target for durable resistance

Rebecca Bart; Megan Cohn; Andrew Kassen; Emily Jane McCallum; Mikel Shybut; Annalise Petriello; Ksenia V. Krasileva; Douglas Dahlbeck; Cesar Medina; Titus Alicai; Lava Kumar; Leandro Marcio Moreira; Júlio Rodrigues Neto; Valérie Verdier; María Angélica Santana; Nuttima Kositcharoenkul; Hervé Vanderschuren; Wilhelm Gruissem; Adriana Bernal; Brian J. Staskawicz

Cassava bacterial blight (CBB), incited by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease of cassava, a staple food source for millions of people in developing countries. Here we present a widely applicable strategy for elucidating the virulence components of a pathogen population. We report Illumina-based draft genomes for 65 Xam strains and deduce the phylogenetic relatedness of Xam across the areas where cassava is grown. Using an extensive database of effector proteins from animal and plant pathogens, we identify the effector repertoire for each sequenced strain and use a comparative sequence analysis to deduce the least polymorphic of the conserved effectors. These highly conserved effectors have been maintained over 11 countries, three continents, and 70 y of evolution and as such represent ideal targets for developing resistance strategies.


PLOS ONE | 2012

Exploiting the Combination of Natural and Genetically Engineered Resistance to Cassava Mosaic and Cassava Brown Streak Viruses Impacting Cassava Production in Africa

Hervé Vanderschuren; Isabel Moreno; Ravi B Anjanappa; Ima M. Zainuddin; Wilhelm Gruissem

Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444). Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo). An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV), a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa.


Journal of Proteomics | 2013

Proteomics of model and crop plant species: status, current limitations and strategic advances for crop improvement.

Hervé Vanderschuren; Ezequiel Matias Lentz; Ima M. Zainuddin; Wilhelm Gruissem

In the last decade proteomics studies have gained increasing importance in plant research. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins have been particularly instrumental to characterize proteomes and their modulation during plant development, biotic and abiotic stresses. Despite important advances, plant proteome analysis, including those of model plant species, remain constrained by limitations inherent to proteomics techniques and data interpretation. Here we review the approaches and achievements of proteomics with model plant and crop species (i.e. Arabidopsis and rice) and discuss the current limitations of crop proteomics. We anticipate future directions that could advance the contribution of plant proteomics to crop improvement.


Plant Cell Reports | 2011

Cassava: constraints to production and the transfer of biotechnology to African laboratories

Simon E. Bull; Joseph Ndunguru; Wilhelm Gruissem; John R. Beeching; Hervé Vanderschuren

Knowledge and technology transfer to African institutes is an important objective to help achieve the United Nations Millennium Development Goals. Plant biotechnology in particular enables innovative advances in agriculture and industry, offering new prospects to promote the integration and dissemination of improved crops and their derivatives from developing countries into local markets and the global economy. There is also the need to broaden our knowledge and understanding of cassava as a staple food crop. Cassava (Manihot esculenta Crantz) is a vital source of calories for approximately 500 million people living in developing countries. Unfortunately, it is subject to numerous biotic and abiotic stresses that impact on production, consumption, marketability and also local and country economics. To date, improvements to cassava have been led via conventional plant breeding programmes, but with advances in molecular-assisted breeding and plant biotechnology new tools are being developed to hasten the generation of improved farmer-preferred cultivars. In this review, we report on the current constraints to cassava production and knowledge acquisition in Africa, including a case study discussing the opportunities and challenges of a technology transfer programme established between the Mikocheni Agricultural Research Institute in Tanzania and Europe-based researchers. The establishment of cassava biotechnology platform(s) should promote research capabilities in African institutions and allow scientists autonomy to adapt cassava to suit local agro-ecosystems, ultimately serving to develop a sustainable biotechnology infrastructure in African countries.


The Plant Cell | 2014

Large-Scale Proteomics of the Cassava Storage Root and Identification of a Target Gene to Reduce Postharvest Deterioration.

Hervé Vanderschuren; Evans Nyaboga; Jacquelyne S. Poon; Katja Baerenfaller; Jonas Grossmann; Matthias Hirsch-Hoffmann; Norbert Kirchgessner; Paolo Nanni; Wilhelm Gruissem

This work investigates the proteome changes during the onset of postharvest physiological deterioration (PPD) in cassava, an important root crop for food security in the tropics. The time-course proteomic study was instrumental in the identification of gene candidates to delay PPD in cassava roots. Cassava (Manihot esculenta) is the most important root crop in the tropics, but rapid postharvest physiological deterioration (PPD) of the root is a major constraint to commercial cassava production. We established a reliable method for image-based PPD symptom quantification and used label-free quantitative proteomics to generate an extensive cassava root and PPD proteome. Over 2600 unique proteins were identified in the cassava root, and nearly 300 proteins showed significant abundance regulation during PPD. We identified protein abundance modulation in pathways associated with oxidative stress, phenylpropanoid biosynthesis (including scopoletin), the glutathione cycle, fatty acid α-oxidation, folate transformation, and the sulfate reduction II pathway. Increasing protein abundances and enzymatic activities of glutathione-associated enzymes, including glutathione reductases, glutaredoxins, and glutathione S-transferases, indicated a key role for ascorbate/glutathione cycles. Based on combined proteomics data, enzymatic activities, and lipid peroxidation assays, we identified glutathione peroxidase as a candidate for reducing PPD. Transgenic cassava overexpressing a cytosolic glutathione peroxidase in storage roots showed delayed PPD and reduced lipid peroxidation as well as decreased H2O2 accumulation. Quantitative proteomics data from ethene and phenylpropanoid pathways indicate additional gene candidates to further delay PPD. Cassava root proteomics data are available at www.pep2pro.ethz.ch for easy access and comparison with other proteomics data.

Collaboration


Dive into the Hervé Vanderschuren's collaboration.

Top Co-Authors

Avatar

Peng Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge