Hesham A. El-Beshbishy
Al-Azhar University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hesham A. El-Beshbishy.
Pathophysiology | 2011
Hesham A. El-Beshbishy; Ola M. Tork; Mohamed Fath El-Bab; Mohamed A. Autifi
Green tea polyphenols (GTP) is considered to have protective effects against several diseases. The hepatotoxicity of azathioprine (AZA) has been reported and was found to be associated with oxidative damage. This study was conducted to evaluate the role of GTP to protect against AZA-induced liver injury in rats. AZA was administered i.p. in a single dose (50mgkg(-1)) to adult male rats. AZA-intoxicated rats were orally administered GTP (either 100mgkg(-1)day(-1) or 300mgkg(-1)day(-1), for 21 consecutive days, started 7 days prior AZA injection). AZA administration to rats resulted in significant elevation of serum transaminases (sALT and sAST), alkaline phosphatase (sALP), depletion of hepatic reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx), accumulation of oxidized glutathione (GSSG), elevation of lipid peroxides (LPO) expressed as malondialdehyde (MDA), reduction of the hepatic total antioxidant activity (TAA), decrease serum total proteins and elevation of liver protein carbonyl content. Significant rises in liver tumor necrosis factor-alpha (TNF-α) and caspase-3 levels were noticed in AZA-intoxicated rats. Treatment of the AZA-intoxicated rats with GTP significantly prevented the elevations of sALT, sAST and sALP, inhibited depletion of hepatic GSH, GPx, CAT and GSSG and inhibited MDA accumulation. Furthermore, GTP had normalized serum total proteins and hepatic TAA, CAT, TNF-α and caspase-3 levels of AZA-intoxicated rats. In addition, GTP prevented the AZA-induced apoptosis and liver injury as indicated by the liver histopathological analysis. The linear regression analysis showed significant correlation in either AZA-GTP100 or AZA-GTP300 groups between TNF-α and each of serum ALT, AST, ALP and total proteins and liver TAA, GPX, CAT, GSH, GSSG, MDA and caspase-3 levels. However, liver TNF-α produced non-significant correlation with the serum total proteins in both AZA-GTP100 and AZA-GTP300 groups. In conclusion, our data indicate that GTP protects against AZA-induced liver injury in rats through antioxidant, anti-inflammatory and antiapoptotic mechanisms. However, further merit investigations are needed to verify these results and to assess the efficacy of GTP therapy to counteract the liver injury and oxidative stress status.
European Journal of Pharmacology | 2011
Hesham A. El-Beshbishy; Saleh A. Bahashwan; Hamdy A.A. Aly; Hesham A. Fakher
Cisplatin is chemotherapeutic drug used in treatment of malignancies. However, its clinical utility is limited by nephrotoxicity. The purpose of present study is to investigate biochemical and molecular effects of alpha lipoic acid (ALA) to protect against cisplatin-induced nephrotoxicity in mice. Cisplatin (12 mg/kg/day) was administered i.p. for 4 days. Group of mice were given ALA (20 mg/kg/day) for 18 days. Another set were administered ALA for 4 days before and 14 days after cisplatin intoxication. The results obtained revealed that kidney/body weight ratio of cisplatin-treated mice was increased by +40%. ALA intake declined the ratio by -19%. Serum creatinine and urea levels were increased in cisplatin-treated mice by +375% and +69%, respectively. These changes were moved to normalcy upon ALA intake. Cisplatin treatment elevated malondialdehyde (MDA) by 27 fold and declined reduced glutathione (GSH) by -49%. Cisplatin decreased catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymes by -47%, -49% and -59%, respectively. ALA decreased the MDA by -286% and increased the GSH, catalase, SOD and GPx levels by +60%, +81%, +90% and +38%, respectively. ALA increased mRNA expression of catalase, CuZn SOD and GPx genes near to normalcy compared to cisplatin-treated mice. Cisplatin-treated mice increased caspase-3-activity by +223%, nitric oxide (NO) by +74% and inducible nitric oxide synthase (iNOS) by 10 fold. ALA intake declined these changes by -43%, -45% and -73%, respectively. ALA may play renoprotective role on cisplatin-induced nephrotoxicity through antioxidant and antiapoptotic mechanisms combined with initiation of mRNA expression of antioxidant genes.
Ecotoxicology and Environmental Safety | 2012
Hesham A. El-Beshbishy; Memy H. Hassan; Hamdy A.A. Aly; Ahmed S. Doghish; Abdulaziz A.A. Alghaithy
Beryllium chloride (BeCl(2)) is a highly toxic substance that accumulates in different tissues after absorption. The purpose of this study was to investigate protective role of crocin against BeCl(2)-intoxication in rats. Male Wistar rats were used in this study and categorised into four groups (n=8). Group I served as normal control rats. Group II treated orally with BeCl(2) 86 mg/kg b.w. for five consecutive days. This dose was equivalent to experimental LD(50). Group III treated intraperitoneally with crocin 200 mg/kg b.w. for seven consecutive days. Group IV received crocin for seven consecutive days before BeCl(2) administration. Blood samples and liver and brain homogenates were obtained for haematological, biochemical and RT-PCR examinations. The haematocrit value, RBCs count and haemoglobin concentration were significantly decreased in BeCl(2)-treated rats. A significant increase was observed in rat liver and brain malondialdehyde level and protein carbonyls content in BeCl(2) exposed group compared to the control group, and these values were significantly declined upon administration of crocin. Lactate dehydrogenase levels in rat liver and brain significantly increased compared to the control group and was associated with significant decrease in catalase and superoxide dismutase activities. Reduced glutathione hepatic contents of BeCl(2)-treated rats were significantly decreased. There was significant decline in mRNA expression of catalase and superoxide dismutase genes in BeCl(2)-intoxicated rats compared to the normal rats. Crocin treatment prior to BeCl(2) intake resulted in significant increase in mRNA expressions of catalase and superoxide dismutase genes near to normalcy. The haematological and biochemical parameters were restored near to normal levels. Our results suggested that, BeCl(2) induced oxidation of cellular lipids and proteins and that administration of crocin reduced BeCl(2)-induced oxidative stress combined with initiation of mRNA expression of antioxidant genes.
Toxicology and Industrial Health | 2016
Hamdy A.A. Aly; Memy H. Hassan; Hesham A. El-Beshbishy; Abdulrahman M. Alahdal; Abdel-Moneim M. Osman
Phthalates are abundantly produced plasticizers, and dibutyl phthalate (DBP) is the most widely used derivative in various consumer products and medical devices. This study was conducted to further explore the potential testicular toxicity of DBP in adult rats and to elucidate the underlying mechanisms. Adult male albino rats were treated orally with DBP at doses of 0, 200, 400, or 600 mg/kg/day for 15 consecutive days. Testicular weight, sperm count, and motility were significantly decreased. Treatment with DBP decreased serum follicle-stimulating hormone and testosterone levels and testicular lactate dehydrogenase activity. DBP treatment also decreased serum total antioxidant capacity and the activities of the testicular antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione reductase. Further, DBP treatment provoked degeneration with absence of spermatogenesis and sperms and necrosis in some of seminiferous tubules. These results indicated that oxidative stress and subsequent decrease in testosterone secretion were the potential underlying mechanism of DBP-induced testicular toxicity.
Toxicology and Industrial Health | 2013
Hesham A. El-Beshbishy; Hamdy A.A. Aly; Mostafa M. El-Shafey
Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. BPA is used in the production of polycarbonate plastics and epoxy resins used in manufacturing plastic baby bottles and lining of food cans. In this study, we investigated the BPA-induced testicular oxidative stress and perturbation of mitochondrial marker enzymes in male albino rats and its amelioration by α-lipoic acid (LA). Rats were administered a dose of BPA (10 mg/kg body weight) orally for 14 days. This resulted in decreased testes weight, total testicular protein content, testicular enzymes such as acid phosphatase, alkaline phosphatase and lactate dehydrogenase and decline in activities of marker mitochondrial enzymes such as succinate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase, monoamine oxidase and NADH dehydrogenase. The serum testosterone and total antioxidant status were reduced. Besides, it also affected the activities of testicular antioxidant enzymes such as glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. BPA also caused lipid peroxidation and decrease in reduced glutathione content of mitochondria. The co-administration of LA (20 mg/kg body weight; orally for 14 days) together with BPA resulted in restoration of the mitochondrial marker enzyme activities and increasing enzymatic and non-enzymatic antioxidants of mitochondria. The obtained results demonstrated that LA has a potential role in mitigating BPA-induced mitochondrial toxicity through antioxidant mechanism or by direct free radical scavenging activity.
The Scientific World Journal | 2011
Haidy S. Omar; Hesham A. El-Beshbishy; Ziad Moussa; Kamilia F. Taha; Abdel Nasser B. Singab
The present study examines the antioxidative, hypoglycemic, and hypolipidemic activities of Artocarpus heterophyllus (jack fruit) leaf extracts (JFEs). The 70% ethanol (JFEE), n-butanol (JFBE), water (JFWE), chloroform (JFCE), and ethyl acetate (JFEAE) extracts were obtained. Both JFEE and JFBE markedly scavenge diphenylpicrylhydrazyl radical and chelate Fe+2in vitro. A compound was isolated from JFBE and identified using 1D and 2D 1H- and 13C-NMR. The administration of JFEE or JFBE to streptozotocin (STZ)-diabetic rats significantly reduced fasting blood glucose (FBG) from 200 to 56 and 79 mg%, respectively; elevated insulin from 10.8 to 19.5 and 15.1 μU/ml, respectively; decreased lipid peroxides from 7.3 to 5.4 and 5.91 nmol/ml, respectively; decreased %glycosylated hemoglobin A1C (%HbA1C) from 6.8 to 4.5 and 5.0%, respectively; and increased total protein content from 2.5 to 6.3 and 5.7 mg%, respectively. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), VLDL-C, and LDL/HDL ratio significantly declined by -37, -19, -23, -37, and -39%, respectively, in the case of JFEE; and by -31, -14, -17, -31, and -25%, respectively, in the case of JFBE; as compared to diabetic rats. HDL-C increased by +37% (JFEE) and by +11% (JFBE). Both JFEE and JFBE have shown appreciable results in decreasing FBG, lipid peroxides, %HbA1C, TC, LDL-C, and TG levels, and increasing insulin, HDL-C, and protein content. The spectrometric analysis confirmed that the flavonoid isolated from JFBE was isoquercitrin. We can conclude from this study that JFEE and JFBE exert hypoglycemic and hypolipidemic effects in STZ-diabetic rats through an antioxidative pathway that might be referred to their flavonoid contents.
European Journal of Pharmacology | 2012
Hamdy A.A. Aly; Hesham A. El-Beshbishy; Zainy M. Banjar
The current study investigates the potential toxicity of lipopolysaccharide (LPS) on the mitochondrial fraction of rat testis and the possible protective efficacy of lycopene. Adult male Wistar rats were categorized into four groups. Two groups were administered LPS (0.1mg/kg/day for 7 days i.p.); one of these groups received lycopene treatment (4 mg/kg/day by oral gavage, 24h before LPS treatment) (Group IV) and the other received LPS alone (Group III). A vehicle-treated group (Group I) and a lycopene drug control group (Group II) were also included. Sperm count and motility were significantly decreased in Group III. The testicular mitochondrial fraction of Group III showed significant increase in basal and Fe(2+)-induced lipid peroxidation, along with a significant increase in hydrogen peroxide (H(2)O(2)) level. Moreover, the activities of mitochondrial enzymic (SOD, CAT, GPx, GR and ADH) and non-enzymic (GSH and ascorbate) antioxidants levels were decreased. Group III also showed decline in the activities of TCA enzymes such as SDH, MDH and ICDH. Pretreatment with lycopene showed normal sperm parameters, lipid peroxidation, H(2)O(2) level, antioxidant defenses and TCA enzyme activities. In conclusion, this study indicates that LPS-induced oxidative stress leads to functional damages in the testicular mitochondria. Lycopene pretreatment provided a marked normalization in these parameters.
International Journal of Infectious Diseases | 2013
Hesham A. El-Beshbishy; Khalil H. Al-Ali; Ayman A. El-Badry
BACKGROUND Leishmaniasis is a parasitic disease affecting a large number of people worldwide. In this study we carried out the molecular characterization of cutaneous leishmaniasis (CL) in Al-Madinah Al-Munawarah Province, Saudi Arabia, confirming Leishmania major and Leishmania tropica as the prevalent species using molecular techniques. METHODS One hundred and five patients with suspected CL were identified from four different localities in Al-Madinah Al-Munawarah Province and Al-Miqat Hospital, Al-Madinah, Saudi Arabia. Thirty-four of the 105 patients were selected at random for molecular investigation. RESULTS Characterization of CL species by internal transcribed spacer 1 (ITS1) PCR-restriction fragment length polymorphism (RFLP) and kinetoplast DNA (kDNA) PCR established L. major and L. tropica as the causative organisms. kDNA PCR had a sensitivity of 90.7%, whereas ITS1 PCR had a sensitivity of 70.1%, thus facilitating the diagnosis and species identification. Parasite culture alone detected 39.2% and smear alone 55.3% of the positive samples. With the exception of kDNA PCR, all other assays were 100% specific. CONCLUSIONS This study provides the first findings for the comprehensive molecular characterization of CL in Saudi Arabia.
Phytotherapy Research | 2008
Hesham A. El-Beshbishy
Injection of D‐galactosamine and lipopolysaccharide (DGaIN/LPS) is useful as an experimental model of acute hepatic damage. Juvenile rats were used for investigation. The hepatoprotective activity of aqueous garlic (Allium sativum) extract (AGE) at a dose of 300 mg/kg body weight for 14 days, intraperitoneal (i.p.) prior to the induction of DGalN/LPS, was investigated against DGalN/LPS‐induced hepatitis in rats. DGalN/LPS (300 mg/kg body weight/30 µg/kg body weight, i.p.), induced hepatic damage that was manifested by a significant increase in the activities of marker enzymes [alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (γGT)], bilirubin, lipid peroxides (LPO), tumor necrosis factor (TNF‐α) and myeloperoxidase (MPO) activity level in serum. Also, the lipid profile in serum and liver homogenate including total cholesterol, triglycerides, free fatty acids and phospholipids were significantly deteriorated. The antioxidant enzyme activities (superoxide dismutase, SOD; reduced glutathione, GSH; catalase, CAT and glutathione peroxidase, GPX) in liver homogenate were significantly decreased in the DGalN/LPS. Pretreatment of rats with AGE reversed these altered parameters near to normal control values. Results of this study revealed that AGE could afford a significant protection in the alleviation of DGalN/LPS‐induced hepatic damage. Copyright
International Journal of General Medicine | 2013
Mohamed Fath El-Bab; Nashaat S Zaki; Moaz A. Mojaddidi; Maan Al-Barry; Hesham A. El-Beshbishy
Type 2 diabetes is a metabolic disease associated with serious complications, including diabetic retinopathy (DR). The authors’ main aim was to investigate biochemical parameters and the oxidative stress associated with the type 2 DR patients and to study gene expression of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) among patients with DR [DR(+)] compared with a control nondiabetic group. In all, 67 patients with DR included in this study were diabetic for more than 10 years. Among them, 22 patients were DR(+), and 45 patients did not have DR [DR(−)]. The subjects’ age range was 14 years to 80 years old with diabetes duration range between 2 and 45 years. Body mass index (BMI) was 31.43 ± 5.94 and 32.33 ± 6.54, systolic blood pressure was 117.15 ± 18.16 mmHg and 126.15 ± 20.26 mmHg, diastolic blood pressure was 81.11 ± 10.55 mmHg and 82.77 ± 10.85 mmHg, HbA1c was 7.2 ± 1.1 and 8.19 ± 1.95, serum total cholesterol was 6.61 ± 1.11 and 4.11 ± 0.31, serum triglycerides were 3.52 ± 0.89 and 3.42 ± 0.79, serum low-density lipoprotein (LDL) was 2.12 ± 0.10 and 2.42 ± 0.15, high-density lipoprotein (HDL) was 2.66 ± 0.30 and 2.55 ± 0.21, SOD was 3.12 ± 0.87 and 1.53 ± 0.14, GPx was 11.14 ± 2.21 and 8.2 ± 1.84, CAT was 26.43 ± 3.34 and 9.60 ± 2.14, for DR(−) and DR(+) patients, respectively. SOD, GPx and CAT polymerase chain reaction (PCR) products of the DR(+) patients revealed the diminished expression of CAT gene followed by GPx and SOD genes. All were significant compared with the normal controls, P < 0.05. Linear regression analysis revealed a strong significant positive correlation between the retinopathy grade and the diastolic blood pressure, diabetes duration, hemoglobin A1c (HA1c)%, and fasting blood glucose (P < 0.001). A marginally significant positive correlation between the retinopathy grade and LDL-cholesterol was observed (P < 0.05), and a significant negative correlation between the retinopathy grade and total cholesterol was observed (P < 0.05). Poor glycemic control and alteration in mRNA gene expression of antioxidant enzymes are strongly associated with development of DR and the regular screening is mandatory for early detection and treatment.