Hesham Mostafa
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hesham Mostafa.
Frontiers in Neuroscience | 2015
Ning Qiao; Hesham Mostafa; Federico Corradi; Marc Osswald; Fabio Stefanini; Dora Sumislawska; Giacomo Indiveri
Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.
Frontiers in Neuroscience | 2015
Hesham Mostafa; Ali Khiat; Alexander Serb; Christian Mayr; Giacomo Indiveri; Themis Prodromakis
Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic “cognitive” capabilities such as learning. One promising and scalable approach for implementing neuromorphic synapses is to use nano-scale memristors as synaptic elements. In this paper we propose a hybrid CMOS-memristor system comprising CMOS neurons interconnected through TiO2−x memristors, and spike-based learning circuits that modulate the conductance of the memristive synapse elements according to a spike-based Perceptron plasticity rule. We highlight a number of advantages for using this spike-based plasticity rule as compared to other forms of spike timing dependent plasticity (STDP) rules. We provide experimental proof-of-concept results with two silicon neurons connected through a memristive synapse that show how the CMOS plasticity circuits can induce stable changes in memristor conductances, giving rise to increased synaptic strength after a potentiation episode and to decreased strength after a depression episode.
IEEE Transactions on Neural Networks | 2018
Hesham Mostafa
Gradient descent training techniques are remarkably successful in training analog-valued artificial neural networks (ANNs). Such training techniques, however, do not transfer easily to spiking networks due to the spike generation hard nonlinearity and the discrete nature of spike communication. We show that in a feedforward spiking network that uses a temporal coding scheme where information is encoded in spike times instead of spike rates, the network input–output relation is differentiable almost everywhere. Moreover, this relation is piecewise linear after a transformation of variables. Methods for training ANNs thus carry directly to the training of such spiking networks as we show when training on the permutation invariant MNIST task. In contrast to rate-based spiking networks that are often used to approximate the behavior of ANNs, the networks we present spike much more sparsely and their behavior cannot be directly approximated by conventional ANNs. Our results highlight a new approach for controlling the behavior of spiking networks with realistic temporal dynamics, opening up the potential for using these networks to process spike patterns with complex temporal information.
Nature Communications | 2015
Hesham Mostafa; Lorenz K. Müller; Giacomo Indiveri
Constraint satisfaction problems are ubiquitous in many domains. They are typically solved using conventional digital computing architectures that do not reflect the distributed nature of many of these problems, and are thus ill-suited for solving them. Here we present a parallel analogue/digital hardware architecture specifically designed to solve such problems. We cast constraint satisfaction problems as networks of stereotyped nodes that communicate using digital pulses, or events. Each node contains an oscillator implemented using analogue circuits. The non-repeating phase relations among the oscillators drive the exploration of the solution space. We show that this hardware architecture can yield state-of-the-art performance on random SAT problems under reasonable assumptions on the implementation. We present measurements from a prototype electronic chip to demonstrate that a physical implementation of the proposed architecture is robust to practical non-idealities and to validate the theory proposed.
international symposium on circuits and systems | 2014
Hesham Mostafa; Federico Corradi; Fabio Stefanini; Giacomo Indiveri
To endow large scale VLSI networks of spiking neurons with learning abilities it is important to develop compact and low power circuits that implement synaptic plasticity mechanisms. In this paper we present an analog/digital Spike-Timing Dependent Plasticity (STDP) circuit that changes its internal state in a continuous analog way on short biologically plausible time scales and drives its weight to one of two possible bi-stable states on long time scales. We highlight the differences and improvements over previously proposed circuits and demonstrate the performance of the new circuit using data measured from a chip fabricated using a standard 180nm CMOS process. Finally we discuss the use of stochastic learning methods that can best exploit the properties of this circuit for implementing robust machine-learning algorithms.
neural information processing systems | 2013
Hesham Mostafa; Lorenz. K. Mueller; Giacomo Indiveri
Understanding the sequence generation and learning mechanisms used by recurrent neural networks in the nervous system is an important problem that has been studied extensively. However, most of the models proposed in the literature are either not compatible with neuroanatomy and neurophysiology experimental findings, or are not robust to noise and rely on fine tuning of the parameters. In this work, we propose a novel model of sequence learning and generation that is based on the interactions among multiple asymmetrically coupled winner-take-all (WTA) circuits. The network architecture is consistent with mammalian cortical connectivity data and uses realistic neuronal and synaptic dynamics that give rise to noise-robust patterns of sequential activity. The novel aspect of the network we propose lies in its ability to produce robust patterns of sequential activity that can be halted, resumed, and readily modulated by external input, and in its ability to make use of realistic plastic synapses to learn and reproduce the arbitrary input-imposed sequential patterns. Sequential activity takes the form of a single activity bump that stably propagates through multiple WTA circuits along one of a number of possible paths. Because the network can be configured to either generate spontaneous sequences or wait for external inputs to trigger a transition in the sequence, it provides the basis for creating state-dependent perception-action loops. We first analyze a rate-based approximation of the proposed spiking network to highlight the relevant features of the network dynamics and then show numerical simulation results with spiking neurons, realistic conductance-based synapses, and spike-timing dependent plasticity (STDP) rules to validate the rate-based model.
Neural Computation | 2015
Hesham Mostafa; Lorenz K. Müller; Giacomo Indiveri
Gamma-band rhythmic inhibition is a ubiquitous phenomenon in neural circuits, yet its computational role remains elusive. We show that a model of gamma-band rhythmic inhibition allows networks of coupled cortical circuit motifs to search for network configurations that best reconcile external inputs with an internal consistency model encoded in the network connectivity. We show that Hebbian plasticity allows the networks to learn the consistency model by example. The search dynamics driven by rhythmic inhibition enable the described networks to solve difficult constraint satisfaction problems without making assumptions about the form of stochastic fluctuations in the network. We show that the search dynamics are well approximated by a stochastic sampling process. We use the described networks to reproduce perceptual multistability phenomena with switching times that are a good match to experimental data and show that they provide a general neural framework that can be used to model other perceptual inference phenomena.
european conference on circuit theory and design | 2013
Hesham Mostafa; Federico Corradi; Marc Osswald; Giacomo Indiveri
We present an automated design approach that leverages the commonly available digital design tools in order to rapidly synthesize asynchronous event-based interface circuits from behavioral VHDL code. As part of the proposed design approach, we describe a verification methodology that is able to reveal early in the design process potential timing failures in the generated circuits. Due to the fast design cycle, the approach presented allows designers to quickly explore different architectures for asynchronous circuits and compare them using quantitative metrics based for example on power consumption or silicon area. We validated the proposed design method by synthesizing asynchronous interface circuits for a neuromorphic multi-neuron architecture, and fabricating the VLSI device. We present data from silicon that demonstrates the correct operation of the automatically generated circuits.
international symposium on circuits and systems | 2017
Hesham Mostafa; Bruno U. Pedroni; Sadique Sheik; Gert Cauwenberghs
Spike generation and routing is typically the most energy-demanding operation in neuromorphic hardware built using spiking neurons. Spiking neural networks running on neuromorphic hardware, however, often use rate-coding where the neurons spike rate is treated as the information-carrying quantity. Rate-coding is a highly inefficient coding scheme with minimal information content in each spike, which requires the transmission of a large number of spikes. In this paper, we describe an alternative type of spiking networks based on temporal coding where neuron spiking activity is very sparse and information is encoded in the time of each spike. We implemented the proposed networks on an FPGA platform and we use these sparsely active spiking networks to classify MNIST digits. The network FPGA implementation produces the classification output using only few tens of spikes from the hidden layer, and the classification result is obtained very quickly, typically within 1–3 synaptic time constants. We describe the idealized network dynamics and how these dynamics are adapted to allow an efficient implementation on digital hardware. Our results illustrate the importance of making use of the temporal dynamics in spiking networks in order to maximize the information content of each spike, which ultimately leads to reduced spike counts, improved energy efficiency, and faster response times.
Frontiers in Neuroscience | 2018
Hesham Mostafa; Vishwajith Ramesh; Gert Cauwenberghs
Error backpropagation is a highly effective mechanism for learning high-quality hierarchical features in deep networks. Updating the features or weights in one layer, however, requires waiting for the propagation of error signals from higher layers. Learning using delayed and non-local errors makes it hard to reconcile backpropagation with the learning mechanisms observed in biological neural networks as it requires the neurons to maintain a memory of the input long enough until the higher-layer errors arrive. In this paper, we propose an alternative learning mechanism where errors are generated locally in each layer using fixed, random auxiliary classifiers. Lower layers could thus be trained independently of higher layers and training could either proceed layer by layer, or simultaneously in all layers using local error information. We address biological plausibility concerns such as weight symmetry requirements and show that the proposed learning mechanism based on fixed, broad, and random tuning of each neuron to the classification categories outperforms the biologically-motivated feedback alignment learning technique on the CIFAR10 dataset, approaching the performance of standard backpropagation. Our approach highlights a potential biological mechanism for the supervised, or task-dependent, learning of feature hierarchies. In addition, we show that it is well suited for learning deep networks in custom hardware where it can drastically reduce memory traffic and data communication overheads. Code used to run all learning experiments is available under https://gitlab.com/hesham-mostafa/learning-using-local-erros.git.