Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heung Soo Baek is active.

Publication


Featured researches published by Heung Soo Baek.


Mediators of Inflammation | 2012

Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid

Jueun Oh; Tao Yu; Soo Jeong Choi; Yanyan Yang; Heung Soo Baek; Soon Ae An; Lee Kyoung Kwon; Jinsol Kim; Ho Sik Rho; Song Seok Shin; Wahn Soo Choi; Sungyoul Hong; Jae Youl Cho

Carnosic acid (CA) is a diterpene compound exhibiting antioxidative, anticancer, anti-angiogenic, anti-inflammatory, anti-metabolic disorder, and hepatoprotective and neuroprotective activities. In this study, the effect of CA on various skin inflammatory responses and its inhibitory mechanism were examined. CA strongly suppressed the production of IL-6, IL-8, and MCP-1 from keratinocyte HaCaT cells stimulated with sodium lauryl sulfate (SLS) and retinoic acid (RA). In addition, CA blocked the release of nitric oxide (NO), tumor necrosis factor (TNF)-α, and prostaglandin E2 (PGE2) from RAW264.7 cells activated by the toll-like receptor (TLR)-2 ligands, Gram-positive bacterium-derived peptidoglycan (PGN) and pam3CSK, and the TLR4 ligand, Gram-negative bacterium-derived lipopolysaccharide (LPS). CA arrested the growth of dermatitis-inducing Gram-positive and Gram-negative microorganisms such Propionibacterium acnes, Pseudomonas aeruginosa, and Staphylococcus aureus. CA also blocked the nuclear translocation of nuclear factor (NF)-κB and its upstream signaling including Syk/Src, phosphoinositide 3-kinase (PI3K), Akt, inhibitor of κBα (IκBα) kinase (IKK), and IκBα for NF-κB activation. Kinase assays revealed that Syk could be direct enzymatic target of CA in its anti-inflammatory action. Therefore, our data strongly suggest the potential of CA as an anti-inflammatory drug against skin inflammatory responses with Src/NF-κB inhibitory properties.


Bioorganic & Medicinal Chemistry Letters | 2011

Inhibitory activity of novel kojic acid derivative containing trolox moiety on melanogenesis.

Soo Mi Ahn; Ho Sik Rho; Heung Soo Baek; Yung Hyup Joo; Yong Deog Hong; Song Seok Shin; Young-Ho Park; Soo Nam Park

A novel kojic acid derivative containing a trolox moiety, (±)-5-hydroxy-4-oxo-4H-pyran-2-yl methyl 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (3a), was synthesized. The two biologically active compounds, namely, kojic acid and trolox, were conjugated via an ester bond as they are expected to behave synergistically. The antioxidant activity and the tyrosinase inhibitory activity of this novel kojic acid derivative on melanogenesis were evaluated. Compound 3a exhibited potent tyrosinase inhibitory activity and radical scavenging activity. Limited structure-activity relationship (SAR) investigations indicated that the tyrosinase inhibitory activities may originate from the kojic acid moiety, and the radical scavenging activity may be due to the phenolic hydroxyl group of trolox. Compound 3a also exhibited potent depigmenting activity in a cell-based assay. The limited SAR investigations revealed that the depigmenting activity of 3a may be due to the synergistic activities of kojic acid and its trolox moiety.


Bioorganic & Medicinal Chemistry Letters | 2009

Studies on depigmenting activities of dihydroxyl benzamide derivatives containing adamantane moiety.

Ho Sik Rho; Heung Soo Baek; Soo Mi Ahn; Jae Won Yoo; Duck Hee Kim; Han Gon Kim

Six diphenolic compounds containing adamantane moiety were synthesized and evaluated as potent inhibitors on tyrosinase activity and melanin formation in Melan-A cells. The inhibitory activity of 4-adamantyl resorcinol 1 was similar to that of 4-n-butyl resorcinol in both assays. However, dihydroxyl benzamide derivatives 6a-e showed different inhibitory patterns. All derivatives significantly suppressed the cellular melanin formation without tyrosinase inhibitory activities. These behaviors indicated that the introduction of amide bond changes the binding mode of dihydroxyl groups to tyrosinase. Among derivatives, 6d (3,4-dihydroxyl compound) and 6e (2,3-dihydroxyl compound) showed stronger inhibitory activities (IC(50)=1.25 microM and 0.73 microM, respectively) as compared to 4-n-butyl resorcinol (IC(50)=21.64 microM) and hydroquinone (IC(50)=3.97 microM). This study showed that the position of dihydroxyl substituent at aromatic ring is important for the intercellular inhibition of melanin formation, and also amide linkage and adamantane moiety enhance the inhibition.


Experimental Dermatology | 2013

A novel adamantyl benzylbenzamide derivative, AP736, suppresses melanogenesis through the inhibition of cAMP-PKA-CREB-activated microphthalmia-associated transcription factor and tyrosinase expression

Chang Seok Lee; Won-Hee Jang; Miyoung Park; Kyoung-Mi Jung; Heung Soo Baek; Yung Hyup Joo; Young-Ho Park; Kyung-Min Lim

Melanogenesis is essential for the protection of skin against UV, but excessive production of melanin causes unaesthetic hyperpigmentation. Much effort is being made to develop effective depigmenting agents. Here, we found that a tyrosinase inhibitor, AP736 (5‐adamantan‐1‐yl‐N‐(2,4‐dihydroxy‐benzyl)‐2,4‐dimethoxy‐benzamide) potently suppresses tyrosinase expression, and the mechanism underlying was elucidated. AP736 attenuated the melanin production induced by diverse melanogenic stimuli in murine and human melanocytes. It suppressed the expression of key melanogenic enzymes; tyrosinase, tyrosinase‐related protein‐1 and tyrosinase‐related protein‐2. The expression of microphthalmia‐associated transcription factor (MiTF), a major promoter of melanogenesis was also decreased. AP736 inhibited the activation of cAMP response element‐binding protein (CREB) and phosphokinase A (PKA), and cAMP elevation, reflecting that cAMP‐PKA‐CREB signalling axis was suppressed, resulting in the downregulation of MiTF and tyrosinase. Along with the previously reported tyrosinase inhibitory activity, the suppression of cAMP‐PKA‐CREB‐mediated MiTF and tyrosinase expression by AP736 may be efficient for the treatment for hyperpigmentation.


Bioorganic & Medicinal Chemistry Letters | 2012

Adamantyl N-benzylbenzamide: new series of depigmentation agents with tyrosinase inhibitory activity.

Heung Soo Baek; Yong Deog Hong; Chang Seok Lee; Ho Sik Rho; Song Seok Shin; Young-Ho Park; Yung Hyup Joo

A new series of polyhydroxylated N-benzylbenzamide derivatives containing an adamantyl moiety has been synthesized, and the depigmenting and tyrosinase inhibitory activities of the molecules were evaluated. The lipophilic character of the adamantyl moiety appeared to confer greater depigmentation power on the benzamide derivatives as compared to those lacking adamantyl substitution. Molecular modeling was applied in order to elucidate the interactions between ligands and tyrosinase that led to inhibition.


Bioorganic & Medicinal Chemistry Letters | 2012

Depigmenting activity of new kojic acid derivative obtained as a side product in the synthesis of cinnamate of kojic acid

Jun-Cheol Cho; Ho Sik Rho; Heung Soo Baek; Soo Mi Ahn; Byoung Young Woo; Yong Deog Hong; Jong Woo Cheon; Jung Mi Heo; Song Seok Shin; Young-Ho Park; Kyung-Do Suh

We synthesized cinnamate derivatives of kojic acid for use as depigmenting agents by various esterification methods. The cinnamate of 5-position of kojic acid (6) was obtained by EDC coupling, DCC coupling, acid chloride, and mixed anhydride methods. To obtain the cinnamate of the 2-position of kojic acid (7), we carried out the nucleophilic addition of the potassium salt of cinnamic acid to kojyl chloride. In this reaction, we discovered the occurrence of a side reaction and identified the structure of the side product thus formed. We evaluated the depigmenting activities of both the side product and the cinnamate derivatives of kojic acid. Interestingly, the side product (11) showed more potent depigmenting activity (IC(50)=23.51μM) than compound 7 (IC(50)>100μM) which is the mother compound of the side product. However, it has no tyrosinase inhibitory activity. Compound 6, the cinnamate of 5-position of kojic acid, also showed moderate depigmenting activity (IC(50)=46.64μM) without tyrosinase inhibitory activity. Production of this side product (11) may have originated from the proton exchange between the potassium salt of cinnamic acid and kojyl chloride. We then efficiently reduced the yield of the side product by controlling the equilibrium of the potassium salt of cinnamic acid. The addition of cinnamic acid greatly reduced the amount of the side product produced.


Experimental Dermatology | 2016

Different effects of five depigmentary compounds, rhododendrol, raspberry ketone, monobenzone, rucinol and AP736 on melanogenesis and viability of human epidermal melanocytes

Chang Seok Lee; Yung Hyup Joo; Heung Soo Baek; Miyoung Park; Hong-Ju Shin; Nok-Hyun Park; John Hwan Lee; Young-Ho Park; Song Seok Shin; Hae-Kwang Lee

Numerous medications are used to treat hyperpigmentation. However, several reports have indicated that repeated application of some agents, such as rhododendrol (RD), raspberry ketone (RK) and monobenzone (MB), can be toxic to melanocytes. Although these agents had severe side effects in human trials, no current in vitro methods can predict the safety of such drugs. This study assessed the in vitro effects of five depigmentary compounds including leukoderma‐inducing agents. In particular, we determined the effects of different concentrations and exposure times of different depigmentary agents on cell viability and melanogenesis in the presence and absence of ultraviolet B (UVB) radiation. Concentrations of RD, RK and MB that inhibit melanogenesis are similar to concentrations that are cytotoxic; however, concentrations of rucinol (RC) and AP736 that inhibit melanogenesis are much lower than concentrations that are cytotoxic. Furthermore, the concentrations that cause toxic effects depend on exposure duration, and prolonged exposure to RD, RK and MB had more cytotoxic effects than prolonged exposure to RC and AP736. The cytotoxic effects of RD and RK appear to be mediated by apoptosis due to increased expression of caspase‐3 and caspase‐8; UVB radiation increased the cytotoxicity of these agents and also increased caspase activity. Our results indicate that different leukoderma‐inducing compounds have different effects on the viability of normal epidermal melanocytes and suggest that the in vitro assay used here can be used to predict whether an investigational compound that induces leukoderma may lead to adverse effects in human trials.


Toxicology in Vitro | 2016

Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45.

Minjeong Kim; Heung Soo Baek; Miri Lee; Hyeonji Park; Song Seok Shin; Dal Woong Choi; Kyung-Min Lim

Rhododenol or rhododendrol (RD, 4-(4-hydroxyphenyl)-2-butanol) occurs naturally in many plants along with raspberry ketone (RK, 4-(4-hydroxyphenyl)-2-butanone), a ketone derivative, which include Nikko maple tree (Acer nikoense) and white birch (Betula platyphylla). De-pigmenting activity of RD was discovered and it was used as a brightening ingredient for the skin whitening cosmetics. Recently, cosmetics containing RD were withdrawn from the market because a number of consumers developed leukoderma, inflammation and erythema on their face, neck and hands. Here, we explored the mechanism underlying the toxicity of RD and RK against melanocytes using B16F10 murine melanoma cells and human primary epidermal melanocytes. Treatment with RD or RK resulted in the decreased cell viability in a dose-dependent manner which appeared from cell growth arrest. Consistently, ROS generation was significantly increased by RD or RK as determined by DCF-enhanced fluorescence. An antioxidant enzyme, glutathione peroxidase was depleted as well. In line with ROS generation, oxidative damages and the arrest of normal cell proliferation, GADD genes (Growth Arrest and DNA Damage) that include GADD45 and GADD153, were significantly up-regulated. Prevention of ROS generation with an anti-oxidant, N-acetylcysteine (NAC) significantly rescued RD and RK-suppressed melanocyte proliferation. Consistently, up-regulation of GADD45 and GADD153 was significantly attenuated by NAC, suggesting that increased ROS and the resultant growth arrest of melanocytes may contribute to RD and RK-induced leukoderma.


Bioorganic & Medicinal Chemistry Letters | 2014

3D-QSAR study of adamantyl N-benzylbenzamides as melanogenesis inhibitors.

Yong Deog Hong; Heung Soo Baek; Haelim Cho; Soo Mi Ahn; Ho Sik Rho; Young-Ho Park; Yung Hyup Joo; Song Seok Shin

Three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling, comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) of polyhydroxylated N-benzylbenzamide derivatives containing an adamantyl moiety were performed to understand the mechanism of action and structure-activity relationship of these compounds. Contour map analysis indicated that steric contributions of the adamantyl moiety and electrostatic contributions of the hydroxyl group at the 3-position are important in the activity. Activities of the training set and test sets predicted by CoMFA fit well with actual activities, demonstrating that CoMFA, along with the best calculated q(2) value, has the best predictive ability.


Journal of the Society of Cosmetic Scientists of Korea | 2013

Whitening Effects of Adamantyl Benzamide Derivatives

Heung Soo Baek; Soo Mi Ahn; Byoung Young Woo; Young Seok Cho; Soo Jeong Choi; Ho Sik Rho; Kyoung Hee Byoun; Song Seok Shin; Young Ho Park; Yung Hyup Joo

The structure activity relationship of polyhydroxylated benzamide derivatives for whitening effects was examined. The adamantyl benzamide derivatives with catechol (3,4-dihydroxyphenyl) of B-ring part showed good anti-melanogenesis activity, but the inhibitory activity of mono-hydroxyphenyl (3-OH or 4-OH) or 3,4-dimethoxyphenyl substituted derivatives was decreased or lost. Therefore the catechol unit was appeared to be the crucial factor for the inhibition of melanogenesis. And the existence of 2-OH of A-ring part had minor influence on the activity, the length of carbon chain between A-ring and B-ring was also not the major factor for the anti-melanogenesis activity.

Collaboration


Dive into the Heung Soo Baek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge