Hey Kyoung Lee
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hey Kyoung Lee.
Cell | 2003
Hey Kyoung Lee; Kogo Takamiya; Jung Soo Han; Heng-Ye Man; Chong Hyun Kim; Gavin Rumbaugh; Sandy Yu; Lin Ding; Chun He; Ronald S. Petralia; Robert J. Wenthold; Michela Gallagher; Richard L. Huganir
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.
The Journal of Neuroscience | 2000
Tue G. Banke; Derek Bowie; Hey Kyoung Lee; Richard L. Huganir; Arne Schousboe; Stephen F. Traynelis
Modulation of postsynaptic AMPA receptors in the brain by phosphorylation may play a role in the expression of synaptic plasticity at central excitatory synapses. It is known from biochemical studies that GluR1 AMPA receptor subunits can be phosphorylated within their C terminal by cAMP-dependent protein kinase A (PKA), which is colocalized with the phosphatase calcineurin (i.e., phosphatase 2B). We have examined the effect of PKA and calcineurin on the time course, peak open probability (PO,PEAK), and single-channel properties of glutamateevoked responses for neuronal AMPA receptors and homomeric GluR1(flip) receptors recorded in outside-out patches. Inclusion of purified catalytic subunit Cα-PKA in the pipette solution increased neuronal AMPA receptorPO,PEAK (0.92) compared with recordings made with calcineurin included in the pipette (PO,PEAK 0.39). Similarly, Cα-PKA increased PO,PEAK for recombinant GluR1 receptors (0.78) compared with patches excised from cells cotransfected with a cDNA encoding the PKA peptide inhibitor PKI (PO,PEAK 0.50) or patches with calcineurin included in the pipette (PO,PEAK 0.42). Neither PKA nor calcineurin altered the amplitude of single-channel subconductance levels, weighted mean unitary current, mean channel open period, burst length, or macroscopic response waveform for recombinant GluR1 receptors. Substitution of an amino acid at the PKA phosphorylation site (S845A) on GluR1 eliminated the PKA-induced increase in PO,PEAK, whereas the mutation of a Ca2+,calmodulin-dependent kinase II and PKC phosphorylation site (S831A) was without effect. These results suggest that AMPA receptor peak response open probability can be increased by PKA through phosphorylation of GluR1 Ser845.
Neuron | 1998
Hey Kyoung Lee; Kimihiko Kameyama; Richard L. Huganir; Mark F. Bear
Brief bath application of N-methyl-D-aspartate (NMDA) to hippocampal slices produces long-term synaptic depression (LTD) in CA1 that is (1) sensitive to postnatal age, (2) saturable, (3) induced postsynaptically, (4) reversible, and (5) not associated with a change in paired pulse facilitation. Chemically induced LTD (Chem-LTD) and homosynaptic LTD are mutually occluding, suggesting a common expression mechanism. Using phosphorylation site-specific antibodies, we found that induction of chem-LTD produces a persistent dephosphorylation of the GluR1 subunit of AMPA receptors at serine 845, a cAMP-dependent protein kinase (PKA) substrate, but not at serine 831, a substrate of protein kinase C (PKC) and calcium/calmodulin-dependent protein kinase II (CaMKII). These results suggest that dephosphorylation of AMPA receptors is an expression mechanism for LTD and indicate an unexpected role of PKA in the postsynaptic modulation of excitatory synaptic transmission.
The Journal of Neuroscience | 2005
Fiona M. Laird; Huaibin Cai; Alena V. Savonenko; Mohamed H. Farah; Kaiwen He; Tatyana Melnikova; Hongjin Wen; Hsueh Cheng Chiang; Guilian Xu; Vassilis E. Koliatsos; David R. Borchelt; Donald L. Price; Hey Kyoung Lee; Philip C. Wong
A transmembrane aspartyl protease termed β-site APP cleavage enzyme 1 (BACE1) that cleaves the amyloid-β precursor protein (APP), which is abundant in neurons, is required for the generation of amyloid-β (Aβ) peptides implicated in the pathogenesis of Alzheimers disease (AD). We now demonstrate that BACE1, enriched in neurons of the CNS, is a major determinant that predisposes the brain to Aβ amyloidogenesis. The physiologically high levels of BACE1 activity coupled with low levels of BACE2 and α-secretase anti-amyloidogenic activities in neurons is a major contributor to the accumulation of Aβ in the CNS, whereas other organs are spared. Significantly, deletion of BACE1 in APPswe;PS1ΔE9 mice prevents both Aβ deposition and age-associated cognitive abnormalities that occur in this model of Aβ amyloidosis. Moreover, Aβ deposits are sensitive to BACE1 dosage and can be efficiently cleared from the CNS when BACE1 is silenced. However, BACE1 null mice manifest alterations in hippocampal synaptic plasticity as well as in performance on tests of cognition and emotion. Importantly, memory deficits but not emotional alterations in BACE1–/– mice are prevented by coexpressing APPswe;PS1ΔE9 transgenes, indicating that other potential substrates of BACE1 may affect neural circuits related to emotion. Our results establish BACE1 and APP processing pathways as critical for cognitive, emotional, and synaptic functions, and future studies should be alert to potential mechanism-based side effects that may occur with BACE1 inhibitors designed to ameliorate Aβ amyloidosis in AD.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Chong-Hyun Kim; Hee Jung Chung; Hey Kyoung Lee; Richard L. Huganir
The interaction of PDZ domain-containing proteins with the C termini of α-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA) receptors has been suggested to be important in the regulation of receptor targeting to excitatory synapses. Recent studies have shown that the rapid internalization of AMPA receptors at synapses may mediate, at least in part, the expression of long-term depression (LTD). We have previously shown that phosphorylation of Ser-880 on the AMPA receptor GluR2 subunit differentially regulated the interaction of GluR2 with the PDZ domain-containing proteins GRIP1 and PICK1. Here, we show that induction of LTD in hippocampal slices increases phosphorylation of Ser-880 within the GluR2 C-terminal PDZ ligand, suggesting that the modulation of GluR2 interaction with GRIP1 and PICK1 may regulate AMPA receptor internalization during LTD. Moreover, postsynaptic intracellular perfusion of GluR2 C-terminal peptides that disrupt GluR2 interaction with PICK1 inhibit the expression of hippocampal LTD. These results suggest that the interaction of GluR2 with PICK1 may play a regulatory role in the expression of LTD in the hippocampus.
Neuron | 1998
Kimihiko Kameyama; Hey Kyoung Lee; Mark F. Bear; Richard L. Huganir
Hippocampal N-methyl-D-aspartate (NMDA) receptor-dependent long-term synaptic depression (LTD) is associated with a persistent dephosphorylation of the GluR1 subunit of AMPA receptors at a site (Ser-845) phosphorylated by cAMP-dependent protein kinase (PKA). In the present study, we show that dephosphorylation of a postsynaptic PKA substrate may be crucial for LTD expression. PKA activators inhibited both AMPA receptor dephosphorylation and LTD. Injection of a cAMP analog into postsynaptic neurons prevented LTD induction and reversed previously established homosynaptic LTD without affecting baseline synaptic transmission. Moreover, infusing a PKA inhibitor into postsynaptic cells produced synaptic depression that occluded homosynaptic LTD. These findings suggest that dephosphorylation of a PKA site on AMPA receptors may be one mechanism for NMDA receptor-dependent homosynaptic LTD expression.
Neuron | 2004
Mansuo Hayashi; Se-Young Choi; B. S. Shankaranarayana Rao; Hae Yoon Jung; Hey Kyoung Lee; Dawei Zhang; Sumantra Chattarji; Alfredo Kirkwood; Susumu Tonegawa
Molecular and cellular mechanisms for memory consolidation in the cortex are poorly known. To study the relationships between synaptic structure and function in the cortex and consolidation of long-term memory, we have generated transgenic mice in which catalytic activity of PAK, a critical regulator of actin remodeling, is inhibited in the postnatal forebrain. Cortical neurons in these mice displayed fewer dendritic spines and an increased proportion of larger synapses compared to wild-type controls. These alterations in basal synaptic morphology correlated with enhanced mean synaptic strength and impaired bidirectional synaptic modifiability (enhanced LTP and reduced LTD) in the cortex. By contrast, spine morphology and synaptic plasticity were normal in the hippocampus of these mice. Importantly, these mice exhibited specific deficits in the consolidation phase of hippocampus-dependent memory. Thus, our results provide evidence for critical relationships between synaptic morphology and bidirectional modifiability of synaptic strength in the cortex and consolidation of long-term memory.
Nature | 2012
Tara A. LeGates; Cara M. Altimus; Hui Wang; Hey Kyoung Lee; Sunggu Yang; Haiqing Zhao; Alfredo Kirkwood; E. Todd Weber; Samer Hattar
The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep–wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.
The Journal of Neuroscience | 2007
Anubhuthi Goel; Hey Kyoung Lee
It is well established that sensory cortices of animals can be modified by sensory experience, especially during a brief early critical period in development. Theoretical analyses indicate that there are two synaptic plasticity mechanisms required: input-specific synaptic modifications and global homeostatic mechanisms to provide stability to neural networks. Experience-dependent homeostatic synaptic plasticity mechanisms have subsequently been demonstrated in the visual cortex of juvenile animals. Here, we report that experience-dependent homeostatic synaptic plasticity persists through adulthood in the superficial layers of the mouse visual cortex. We found that 2 d of visual deprivation in the form of dark rearing is necessary and sufficient to cause an increase in AMPA receptor-mediated miniature EPSC amplitude in layer 2/3 neurons. This increase was rapidly reversed by 1 d of light exposure. This reversible change in synaptic strength persisted in adult mice past the critical period for ocular dominance plasticity, which is reported to end at ∼1 month of age in rodents. Interestingly, the mechanism of homeostatic synaptic modifications in 3-month-old mice differed from that in young mice (3 weeks old) in that the multiplicative nature of synaptic scaling is lost. Our results demonstrate that the superficial layers of adult mouse visual cortex retain the ability to undergo reversible experience-dependent homeostatic synaptic plasticity.
Nature Neuroscience | 2006
Anubhuthi Goel; Bin Jiang; Linda W. Xu; Lihua Song; Alfredo Kirkwood; Hey Kyoung Lee
Lack of a sensory input not only alters the cortical circuitry subserving the deprived sense, but also produces compensatory changes in the functionality of other sensory modalities. Here we report that visual deprivation produces opposite changes in synaptic function in primary visual and somatosensory cortices in rats, which are rapidly reversed by visual experience. This type of bidirectional cross-modal plasticity is associated with changes in synaptic AMPA receptor subunit composition.