Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Heyao Wang is active.

Publication


Featured researches published by Heyao Wang.


Nature Genetics | 2008

Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus

Kazuki Yasuda; Kazuaki Miyake; Yukio Horikawa; Kazuo Hara; Haruhiko Osawa; Hiroto Furuta; Yushi Hirota; Hiroyuki Mori; Anna Maria Jönsson; Yoshifumi Sato; Kazuya Yamagata; Yoshinori Hinokio; Heyao Wang; Toshihito Tanahashi; Naoto Nakamura; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Jun Takeda; Eiichi Maeda; Hyoung Doo Shin; Young Min Cho; Kyong Soo Park; Hong Kyu Lee; Maggie C.Y. Ng; Ronald C.W. Ma

We carried out a multistage genome-wide association study of type 2 diabetes mellitus in Japanese individuals, with a total of 1,612 cases and 1,424 controls and 100,000 SNPs. The most significant association was obtained with SNPs in KCNQ1, and dense mapping within the gene revealed that rs2237892 in intron 15 showed the lowest P value (6.7 × 10−13, odds ratio (OR) = 1.49). The association of KCNQ1 with type 2 diabetes was replicated in populations of Korean, Chinese and European ancestry as well as in two independent Japanese populations, and meta-analysis with a total of 19,930 individuals (9,569 cases and 10,361 controls) yielded a P value of 1.7 × 10−42 (OR = 1.40; 95% CI = 1.34–1.47) for rs2237892. Among control subjects, the risk allele of this polymorphism was associated with impairment of insulin secretion according to the homeostasis model assessment of β-cell function or the corrected insulin response. Our data thus implicate KCNQ1 as a diabetes susceptibility gene in groups of different ancestries.


Nature Genetics | 2002

Cblb is a major susceptibility gene for rat type 1 diabetes mellitus

Norihide Yokoi; Kajuro Komeda; Heyao Wang; Hideki Yano; Kazuhiro Kitada; Yuka Saitoh; Yutaka Seino; Kazuki Yasuda; Tadao Serikawa; Susumu Seino

The autoimmune disease type 1 diabetes mellitus (insulin-dependent diabetes mellitus, IDDM) has a multifactorial etiology. So far, the major histocompatibility complex (MHC) is the only major susceptibility locus that has been identified for this disease and its animal models. The Komeda diabetes-prone (KDP) rat is a spontaneous animal model of human type 1 diabetes in which the major susceptibility locus Iddm/kdp1 accounts, in combination with MHC, for most of the genetic predisposition to diabetes. Here we report the positional cloning of Iddm/kdp1 and identify a nonsense mutation in Cblb, a member of the Cbl/Sli family of ubiquitin-protein ligases. Lymphocytes of the KDP rat infiltrate into pancreatic islets and several tissues including thyroid gland and kidney, indicating autoimmunity. Similar findings in Cblb-deficient mice are caused by enhanced T-cell activation. Transgenic complementation with wildtype Cblb significantly suppresses development of the KDP phenotype. Thus, Cblb functions as a negative regulator of autoimmunity and Cblb is a major susceptibility gene for type 1 diabetes in the rat. Impairment of the Cblb signaling pathway may contribute to human autoimmune diseases, including type 1 diabetes.


Journal of Human Genetics | 2009

Construction of a prediction model for type 2 diabetes mellitus in the Japanese population based on 11 genes with strong evidence of the association.

Kazuaki Miyake; Woosung Yang; Kazuo Hara; Kazuki Yasuda; Yukio Horikawa; Haruhiko Osawa; Hiroto Furuta; Maggie C.Y. Ng; Yushi Hirota; Hiroyuki Mori; Keisuke Ido; Kazuya Yamagata; Yoshinori Hinokio; Yoshitomo Oka; Naoko Iwasaki; Yasuhiko Iwamoto; Yuichiro Yamada; Yutaka Seino; Hiroshi Maegawa; Atsunori Kashiwagi; Heyao Wang; Toshihito Tanahashi; Naoto Nakamura; Jun Takeda; Eiichi Maeda; Ken Yamamoto; Katsushi Tokunaga; Ronald C.W. Ma; Wing Yee So; Juliana C.N. Chan

Prediction of the disease status is one of the most important objectives of genetic studies. To select the genes with strong evidence of the association with type 2 diabetes mellitus, we validated the associations of the seven candidate loci extracted in our earlier study by genotyping the samples in two independent sample panels. However, except for KCNQ1, the association of none of the remaining seven loci was replicated. We then selected 11 genes, KCNQ1, TCF7L2, CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, HHEX, GCKR, HNF1B, KCNJ11 and PPARG, whose associations with diabetes have already been reported and replicated either in the literature or in this study in the Japanese population. As no evidence of the gene–gene interaction for any pair of the 11 loci was shown, we constructed a prediction model for the disease using the logistic regression analysis by incorporating the number of the risk alleles for the 11 genes, as well as age, sex and body mass index as independent variables. Cumulative risk assessment showed that the addition of one risk allele resulted in an average increase in the odds for the disease of 1.29 (95% CI=1.25–1.33, P=5.4 × 10−53). The area under the receiver operating characteristic curve, an estimate of the power of the prediction model, was 0.72, thereby indicating that our prediction model for type 2 diabetes may not be so useful but has some value. Incorporation of data from additional risk loci is most likely to increase the predictive power.


Biochemical and Biophysical Research Communications | 2010

Sildenafil promotes adipogenesis through a PKG pathway

Xiaodong Zhang; Jun Ji; Guirui Yan; Jingwei Wu; Xiaoyun Sun; Jingshan Shen; Hualiang Jiang; Heyao Wang

Sildenafil is the first oral PDE5 inhibitor for the treatment of erectile dysfunction and pulmonary arterial hypertension. In the present study, we investigated the effect of sildenafil on adipogenesis in 3T3L1 preadipocytes. Treatment with sildenafil for 8 days significantly promoted adipogenesis characterized by increased lipid droplet and triglyceride content in 3T3L1 cells. Meanwhile, sildenafil induced a pronounced up-regulation of the expression of adipocyte-specific genes, such as aP2 and GLUT4. The results by RT-PCR and Western blotting further showed that sildenafil increased the sequential expression of C/EBP beta, PPAR gamma and C/EBP alpha. Additionally, we found that the other two PDE5 inhibitors (vardenafil and tadalafil) and the cGMP analog 8-pCPT-cGMP also increased adipogenesis. Likewise, 8-pCPT-cGMP could up-regulate the expression of adipogenic and adipocyte-specific genes. Importantly, the PKG inhibitor Rp-8-pCPT-cGMP was able to inhibit both sildenafil and 8-pCPT-cGMP-induced adipogenesis. Furthermore, sildenafil promoted basal and insulin-mediated glucose uptake in 3T3L1 cells, which was counteracted by Rp-8-pCPT-cGMP. These results indicate that sildenafil could promote adipogenesis accompanied by increased glucose uptake through a PKG pathway at least partly.


Biochemical and Biophysical Research Communications | 2009

A novel class of antagonists for the FFAs receptor GPR40

Hui Hu; Ling yan He; Zhen Gong; Ning Li; Yi na Lu; Qi wei Zhai; Hong Liu; Hua Liang Jiang; Weiliang Zhu; Heyao Wang

The free fatty acid receptor, GPR40, is implicated in the pathophysiology of type 2 diabetes, and is a new potential drug target for the treatment of type 2 diabetes. Its antagonist is thought to be not only a useful chemical probe for further exploring the function of GPR40 but also a lead structure for drug development. With virtual screening based on a homology model followed by a cell-based calcium mobilization assay, we found that sulfonamides are a new class of small organic antagonists for GPR40. One of the compounds, DC260126, dose-dependently inhibited GPR40-mediated Ca(2+) elevations stimulated by linoleic acid, oleic acid, palmitoleic acid and lauric acid (IC(50): 6.28+/-1.14, 5.96+/-1.12, 7.07+/-1.42, 4.58+/-1.14 microM, respectively), reduced GTP-loading and ERK1/2 phosphorylation stimulated by linoleic acid in GPR40-CHO cells, suppressed palmitic acid potentiated glucose-stimulated insulin secretion, and negatively regulated GPR40 mRNA expression induced by oleic acid in Min6 cells.


BioMed Research International | 2010

A Metabonomic Comparison of Urinary Changes in Zucker and GK Rats

Liangcai Zhao; Xiaodong Zhang; Shixian Liao; Hongchang Gao; Heyao Wang; Donghai Lin

To further investigate pathogenesis and pathogenic process of type 2 diabetes mellitus (T2DM), we compared the urinary metabolic profiling of Zucker obese and Goto-kakizaki (GK) rats by NMR-based metabonomics. Principal component analysis (PCA) on urine samples of both models rats indicates markedly elevated levels of creatine/creatinine, dimethylamine, and acetoacetate, with concomitantly declined levels of citrate, 2-ketoglurarate, lactate, hippurate, and succinate compared with control rats, respectively. Simultaneously, compared with Zucker obese rats, the GK rats show decreased levels of trimethylamine, acetate, and choline, as well as increased levels of creatine/creatinine, acetoacetate, alanine, citrate, 2-ketoglutarate, succinate, lactate, and hippurate. This study demonstrates metabolic similarities between the two stages of T2DM, including reduced tricarboxylic acid (TCA) cycle and increased ketone bodies production. In addition, compared with Zucker obese rats, the GK rats have enhanced concentration of energy metabolites, which indicates energy metabolic changes produced in hyperglycemia stage more than in insulin resistance stage.


Journal of Chemical Information and Modeling | 2011

Computational Screening for Active Compounds Targeting Protein Sequences: Methodology and Experimental Validation

Fei Wang; Dongxiang Liu; Heyao Wang; Cheng Luo; Mingyue Zheng; Hong Liu; Weiliang Zhu; Xiaomin Luo; Jian Zhang; Hualiang Jiang

The three-dimensional (3D) structures of most protein targets have not been determined so far, with many of them not even having a known ligand, a truly general method to predict ligand-protein interactions in the absence of three-dimensional information would be of great potential value in drug discovery. Using the support vector machine (SVM) approach, we constructed a model for predicting ligand-protein interaction based only on the primary sequence of proteins and the structural features of small molecules. The model, trained by using 15,000 ligand-protein interactions between 626 proteins and over 10,000 active compounds, was successfully used in discovering nine novel active compounds for four pharmacologically important targets (i.e., GPR40, SIRT1, p38, and GSK-3β). To our knowledge, this is the first example of a successful sequence-based virtual screening campaign, demonstrating that our approach has the potential to discover, with a single model, active ligands for any protein.


Journal of Natural Products | 2012

2-Arylbenzofuran, Flavonoid, and Tyrosinase Inhibitory Constituents of Morus yunnanensis

Xiao Hu; Jin-Wei Wu; Meng Wang; Mei-Hua Yu; Qin-Shi Zhao; Heyao Wang; Ai-Jun Hou

Two novel 2-arylbenzofuran dimers, morusyunnansins A and B (1 and 2), two new biflavonoids, morusyunnansins C and D (3 and 4), two new flavans, morusyunnansins E and F (5 and 6), and four known flavans (7-10) were isolated from the leaves of Morus yunnanensis. Compounds 5-8 showed potent inhibitory effects on mushroom tyrosinase with IC(50) values ranging from 0.12 ± 0.02 to 1.43 ± 0.43 μM.


Journal of Cellular Biochemistry | 2012

Inhibition of GPR40 protects MIN6 β cells from palmitate‐induced ER stress and apoptosis

Jin-Wei Wu; Peng Sun; Xiaodong Zhang; Hong Liu; Hualiang Jiang; Weiliang Zhu; Heyao Wang

Chronic exposure to elevated concentration of free fatty acids (FFA) has been verified to induce endoplasmic reticulum (ER) stress, which leads to pancreatic β‐cell apoptosis. As one of the medium and long chain FFA receptors, GPR40 is highly expressed in pancreatic β cells, mediates both acute and chronic effects of FFA on β‐cell function, but the role of GPR40 in FFA‐induced β‐cell apoptosis remains unclear. In this study, we investigated the possible effects of GPR40 in palmitate‐induced MIN6 β‐cell apoptosis, and found that DC260126, a novel small molecular antagonist of GPR40, could protect MIN6 β cells from palmitate‐induced ER stress and apoptosis. Similar results were observed in GPR40‐deficient MIN6 cells, indicating that palmitate‐induced β‐cell apoptosis is at least partially dependent on ER stress pathway via GRP40. J. Cell. Biochem. 113: 1152–1158, 2012.


PLOS ONE | 2013

DC260126: A Small-Molecule Antagonist of GPR40 that Protects against Pancreatic β-Cells Dysfunction in db/db Mice

Peng Sun; Ting Wang; Yuren Zhou; Hong Liu; Hualiang Jiang; Weiliang Zhu; Heyao Wang

G protein-coupled receptor 40 (GPR40) mediates both acute and chronic effects of free fatty acids (FFAs) on insulin secretion. However, it remains controversial whether inhibition of GPR40 would be beneficial in prevention of type 2 diabetes. This study is designed to evaluate the potential effects of DC260126, a small molecule antagonist of GPR40, on β-cell function following administration of 10 mg/kg dose of DC260126 to obese diabetic db/db mice. Oral glucose tolerance test, glucose stimulated insulin secretion and insulin tolerance test were used to investigate the pharmacological effects of DC260126 on db/db mice after 21-days treatment. Immunohistochemistry and serum biochemical analysis were also performed in this study. Although no significant change of blood glucose levels was found in DC260126-treated mice, DC260126 significantly inhibited glucose stimulated insulin secretion, reduced blood insulin level and improved insulin sensitivity after 3 weeks administration in db/db mice. Moreover, DC260126 reduced the proinsulin/insulin ratio and the apoptotic rate of pancreatic β-cells remarkably in DC260126-treated db/db mice compared to vehicle-treated mice (p<0.05, n = 8). The results suggest that although DC260126 could not provide benefit for improving hyperglycemia, it could protect against pancreatic β-cells dysfunction through reducing overload of β-cells, and it increases insulin sensitivity possibly via alleviation of hyperinsulinemia in db/db mice.

Collaboration


Dive into the Heyao Wang's collaboration.

Top Co-Authors

Avatar

Weiliang Zhu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guirui Yan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ting Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaodong Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kaixian Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peng Sun

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhijian Xu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hualiang Jiang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge