Hezhong Tian
Beijing Normal University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hezhong Tian.
Science of The Total Environment | 2011
Hezhong Tian; Yan Wang; Zhigang Xue; Yiping Qu; Fahe Chai; Jiming Hao
Over half of coal in China is burned directly by power plants, becoming an important source of hazardous trace element emissions, such as mercury (Hg), arsenic (As), and selenium (Se), etc. Based on coal consumption by each power plant, emission factors classified by different boiler patterns and air pollution control devices configuration, atmospheric emissions of Hg, As, and Se from coal-fired power plants in China are evaluated. The national total emissions of Hg, As, and Se from coal-fired power plants in 2007 are calculated at 132 t, 550 t, and 787 t, respectively. Furthermore, according to the percentage of coal consumed by units equipped with different types of PM devices and FGD systems, speciation of mercury is estimated as follows: 80.48 t of Hg, 49.98 t of Hg(2+), and 1.89 t of Hg(P), representing 60.81%, 37.76%, and 1.43% of the totals, respectively. The emissions of Hg, As, and Se in Chinas eastern and central provinces are much higher than those in the west, except for provinces involved in the program of electricity transmission from west to east China, such as Sichuan, Guizhou, Yunnan, Shaanxi, etc.
Environmental Science & Technology | 2012
Hezhong Tian; Jiajia Gao; Long Lu; Dan Zhao; Ke Cheng; Peipei Qiu
A multiple-year emission inventory of hazardous air pollutants (HAPs), including particulate matter (PM), SO(2), NO(x), CO, HCl, As, Cd, Cr, Hg, Ni, Pb, Sb, and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), discharged from municipal solid waste (MSW) incineration in China has been established for the period 2003-2010 by using the best available emission factors and annual activity data. Our results show that the total emissions have rapidly amounted to 28,471.1 t of NO(x), 12,062.1 t of SO(2), 6500.5 t of CO, 4654.6 t of PM, 3609.1 t of HCl, 69.5 t of Sb, 36.7 t of Hg, 9.4 t of Pb, 4.4 t of Cr, 2.8 t of Ni, 926.7 kg of Cd, 231.7 kg of As, and 23.6 g of PCDD/Fs as TEQ (toxic equivalent quantity) by the year 2010. The majority of HAP emissions are concentrated in the eastern central and southeastern areas of China where most MSW incineration plants are built and put into operation. Between 2003 and 2010, provinces always ranking in the top three with largest HAPs emissions are Zhejiang, Guangdong, and Jiangsu. To better understand the emissions of these HAPs and to adopt effective measures to prevent poisoning risks, more specific field-test data collection is necessary.
Environmental Science & Technology | 2014
Hezhong Tian; Kaiyun Liu; Junrui Zhou; Long Lu; Jiming Hao; Peipei Qiu; Jiajia Gao; Chuanyong Zhu; Kun Wang; Shenbing Hua
Coal-fired power plants are the important sources of anthropogenic atmospheric releases of various hazardous trace elements (HTE) because a large quantity of emissions can cause wide dispersion and possible long-distance transportation. To obtain the temporal trends and spatial variation characteristics of various HTE discharged from coal-fired power plants of China, a multiple-year comprehensive emission inventory of HTE including Hg, As, Se, Pb, Cd, Cr, Ni, and Sb has been established for the period 2000-2010. Thanks to the cobenefit removal effects of conventional particulate matter/sulfur dioxide/nitrogen oxides (PM/SO2/NOx) control devices, emissions of these 8 toxic elements have shown a gradual decline since the peak in 2006. The total emissions of Hg, As, Se, Pb, Cd, Cr, Ni, and Sb are substantial and are estimated at about 118.54, 335.45, 459.4, 705.45, 13.34, 505.03, 446.42, and 82.33 tons (t), respectively, in 2010. Shandong, Jiangsu, Shanxi, and Hebei always rank among the top ten provinces with the highest emissions. Further, future emissions for 2015 and 2020 are projected with scenario analysis. Advanced technologies and integrated management strategies to control HTE are in great need.
Journal of Hazardous Materials | 2013
Hezhong Tian; Jiajia Gao; Jiming Hao; Long Lu; Chuanyong Zhu; Peipei Qiu
Along with population growth, rapid urbanization and industrialization process, the volume of municipal solid waste (MSW) generation in China has been increasing sharply in the past 30 years and the total amount of MSW yields will continue to increase. Nowadays, due to global warming warrants particular attention throughout the world, a series of air pollutants (including greenhouse gases, odorous gases, PCDD/Fs, heavy metals, PM, etc.) discharged from waste disposal and treatment processes have become one of the new significant emerging air pollution sources, which arousing great concerns about their adverse effects on surrounding ambient air quality and public health. At present, the overall safely disposed ratio of the collected MSW in China is reported at approximately 78% in 2010, and there are mainly three types of MSW disposal methods practiced in China, including landfill, composting and incineration. The characteristics of air pollutants and greenhouse gases discharge vary substantially among different MSW disposal methods. By presenting a thorough review of MSW generation in China and providing a summarization of the current status of MSW disposal methods practices, this review article makes an integrated overview analysis of existing air pollution problems associated with MSW collection, separation, and disposal processes. Furthermore, some comprehensive control proposals to prevent air pollution for improving MSW management of China in the future are put forward.
Science of The Total Environment | 2012
Hezhong Tian; Long Lu; Ke Cheng; Jiming Hao; Dan Zhao; Yujuan Wang; Wenru Jia; Peipei Qiu
Nickel and its compounds are considered as potential human carcinogens, and atmospheric nickel is one of the major routes for human exposure. By applying the best available fuel-based or product-based emission factors and annual activity levels, a multiple-year comprehensive inventory of anthropogenic atmospheric nickel emissions in China is presented with temporal trend and spatial resolutions for the period of 1980-2009 from both fuels combustion sources and industrial producing processes. We estimate that the total atmospheric nickel emissions from all the sources have increased from 1096.07 t in 1980 to 3933.71 t in 2009, at an average annual growth rate of 4.5%. Therein, coal combustion is the leading source, attributing 63.4% of the national total nickel emissions in 2009; liquid fuels consumption ranks the second, contributing 12.4% of the totals; biofuels burning accounts for 8.4% and the remaining sources together contribute 15.8% of the totals. Significant spatial variations are demonstrated among provincial emissions and the most concentrated regions are the highly industrialized and densely populated areas like the Yangtze River Delta, the Pearl River Delta and the Beijing-Tianjin-Hebei region. Moreover, the overall uncertainties are estimated at -32.6%-37.7% by using Monte Carlo simulation, most of which come from non-ferrous metals smelting category, implying the urgent need for further investigation and field tests. This article may help to combat the increasing stress on air heavy metals pollution in China and provide useful information to calculate global mass balance models for hazardous trace elements.
Environmental Science & Technology | 2012
Hezhong Tian; Dan Zhao; Ke Cheng; Long Lu; Mengchang He; Jiming Hao
An integrated inventory of atmospheric antimony (Sb) emissions from anthropogenic activities in China is compiled for the years 2005-2009. Emissions are estimated for all major anthropogenic sources for the first time. We estimate that the national emissions of antimony are 818 metric tons (t) in 2009, with the largest contribution from coal combustion at 61.8% of the total, while 26.7% of Sb is emitted from nonferrous metals smelting. Emissions are heaviest in Guizhou province, mainly due to small-scale combustion of high-Sb coal without emission control devices, and in Hunan province, where extensive smelting occurs. Furthermore, Sb emissions from 2188 large point sources and area sources are distributed within latitude/longitude-based grids with a resolution of 30 min × 30 min where Sb emissions are largely concentrated in highly populated and industrialized southwestern China, the east central region, and coastal areas. The uncertainties in our bottom-up inventory are quantified as -11% to 40% by Monte Carlo simulation. We recommend continuous field testing of coal combustors and smelters in China to improve the accuracy of these estimates.
Science of The Total Environment | 2016
Kun Wang; Hezhong Tian; Shenbing Hua; Chuanyong Zhu; Jiajia Gao; Yifeng Xue; Jiming Hao; Yong Wang; Junrui Zhou
China has become the largest producer of iron and steel throughout the world since 1996. However, as an energy-and-pollution intensive manufacturing sector, a detailed comprehensive emission inventory of air pollutants for iron and steel industry of China is still not available. To obtain and better understand the temporal trends and spatial variation characteristics of typical hazardous air pollutants (HAPs) emissions from iron and steel production in China, a comprehensive emission inventory of multiple air pollutants, including size segregated particulate matter (TSP/PM10/PM2.5), gaseous pollutants (SO2, NOx, CO), heavy metals (Pb, Cd, Hg, As, Cr, Ni etc.), as well as the more dangerous PCDD/Fs, is established with the unit-based annual activity, specific dynamic emission factors for the historical period of 1978-2011, and the future potential trends till to 2050 are forecasted by using scenario analysis. Our results show that emissions of gaseous pollutants and particulate matter have experienced a gradual increase tendency since 2000, while emissions of priority-controlled heavy metals (Hg, Pb, As, Cd, Cr, and Ni) have exhibited a short-term fluctuation during the period of 1990 to 2005. With regard to the spatial distribution of HAPs emissions in base year 2011, Bohai economic circle is identified as the top emission intensity region where iron and steel smelting plants are densely built; within iron and steel industry, blast furnaces contribute the majority of PM emissions, sinter plants account for most of gaseous pollutants and the majority of PCDD/Fs, whereas steel making processes are responsible for the majority of heavy metal emissions. Moreover, comparisons of future emission trends under three scenarios indicate that advanced technologies and integrated whole process management strategies are in great need to further diminish various hazardous air pollutants from iron and steel industry in the future.
Environmental Science & Technology | 2013
Hezhong Tian; Kaiyun Liu; Jiming Hao; Yan Wang; Jiajia Gao; Peipei Qiu; Chuanyong Zhu
Increasing emissions of nitrogen oxides (NOx) over the Chinese mainland have been of great concern due to their adverse impacts on regional air quality and public health. To explore and obtain the temporal and spatial characteristics of NOx emissions from thermal power plants in China, a unit-based method is developed. The method assesses NOx emissions based on detailed information on unit capacity, boiler and burner patterns, feed fuel types, emission control technologies, and geographical locations. The national total NOx emissions in 2010 are estimated at 7801.6 kt, of which 5495.8 kt is released from coal-fired power plant units of considerable size between 300 and 1000 MW. The top provincial emitter is Shandong where plants are densely concentrated. The average NOx-intensity is estimated at 2.28 g/kWh, markedly higher than that of developed countries, mainly owing to the inadequate application of high-efficiency denitrification devices such as selective catalytic reduction (SCR). Future NOx emissions are predicted by applying scenario analysis, indicating that a reduction of about 40% by the year 2020 can be achieved compared with emissions in 2010. These results suggest that NOx emissions from Chinese thermal power plants could be substantially mitigated within 10 years if reasonable control measures were implemented effectively.
Environmental Pollution | 2011
Hezhong Tian; Dan Zhao; Mengchang He; Yujuan Wang; Ke Cheng
A multiple-year inventory of atmospheric antimony (Sb) emissions from coal combustion in China for the period of 1980-2007 has been calculated for the first time. Specifically, the emission inventories of Sb from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. It shows that the total Sb emissions released from coal combustion in China have increased from 133.19 t in 1980 to 546.67 t in 2007, at an annually average growth rate of 5.4%. The antimony emissions are largely emitted by industrial sector and thermal power generation sector, contributing 53.6% and 26.9% of the totals, respectively. At provincial level, the distribution of Sb emissions shows significant variation. Between 2005 and 2007, provinces always rank at the top five largest Sb emissions are: Guizhou, Hunan, Hebei, Shandong, and Anhui.
Journal of The Air & Waste Management Association | 2012
Hezhong Tian; Yan Wang; Ke Cheng; Yiping Qu; Jiming Hao; Zhigang Xue; Fahe Chai
Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000–2007 are evaluated, by integrating each plants coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NOx (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NOx emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However, advanced specific Hg removal technologies are necessary for further reduction of elemental Hg discharge in the long term. Implications Controlling of atmospheric Hg discharge from coal-fired power plants have aroused great concerns for its adverse impacts on regional environment and human health risks, as well as long-distance transportation. It is of great significance for Chinese decision makers to be aware of the current status of Hg emissions from coal-fired power plants, so that the regulations and policies regarding Hg abatement can be made that are cost-effective and feasible implementation. This study provides the recent trend of atmospheric Hg emissions from coal-fired power plants, and accordingly proposes the preliminary comprehensive Hg control strategies suggestion in the future, which will be helpful for relevant policy making to minimize the harmful risks on environment and human health in China.