Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideaki Miyoshi is active.

Publication


Featured researches published by Hideaki Miyoshi.


Diabetes | 2007

Adipocyte Death, Adipose Tissue Remodeling and Obesity Complications

Katherine J. Strissel; Zlatina S. Stancheva; Hideaki Miyoshi; James W. Perfield; Jason DeFuria; Zoe Jick; Andrew S. Greenberg; Martin S. Obin

OBJECTIVE—We sought to determine the role of adipocyte death in obesity-induced adipose tissue (AT) inflammation and obesity complications. RESEARCH DESIGN AND METHODS—Male C57BL/6 mice were fed a high-fat diet for 20 weeks to induce obesity. Every 4 weeks, insulin resistance was assessed by intraperitoneal insulin tolerance tests, and epididymal (eAT) and inguinal subcutaneous AT (iAT) and livers were harvested for histological, immunohistochemical, and gene expression analyses. RESULTS—Frequency of adipocyte death in eAT increased from <0.1% at baseline to 16% at week 12, coincident with increases in 1) depot weight; 2) AT macrophages (ATMΦs) expressing F4/80 and CD11c; 3) mRNA for tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and interleukin (IL)-10; and 4) insulin resistance. ATMΦs in crown-like structures surrounding dead adipocytes expressed TNF-α and IL-6 proteins. Adipocyte number began to decline at week 12. At week 16, adipocyte death reached ∼80%, coincident with maximal expression of CD11c and inflammatory genes, loss (40%) of eAT mass, widespread collagen deposition, and accelerated hepatic macrosteatosis. By week 20, adipocyte number was restored with small adipocytes, coincident with reduced adipocyte death (fourfold), CD11c and MCP-1 gene expression (twofold), and insulin resistance (35%). eAT weight did not increase at week 20 and was inversely correlated with liver weight after week 12 (r = −0. 85, P < 0.001). In iAT, adipocyte death was first detected at week 12 and remained ≤3%. CONCLUSIONS—These results implicate depot-selective adipocyte death and MΦ-mediated AT remodeling in inflammatory and metabolic complications of murine obesity.


Journal of Clinical Investigation | 2011

The role of lipid droplets in metabolic disease in rodents and humans

Andrew S. Greenberg; Rosalind A. Coleman; Fredric B. Kraemer; James L. McManaman; Martin S. Obin; Vishwajeet Puri; Qing-Wu Yan; Hideaki Miyoshi; Douglas G. Mashek

Lipid droplets (LDs) are intracellular organelles that store neutral lipids within cells. Over the last two decades there has been a dramatic growth in our understanding of LD biology and, in parallel, our understanding of the role of LDs in health and disease. In its simplest form, the LD regulates the storage and hydrolysis of neutral lipids, including triacylglycerol and/or cholesterol esters. It is becoming increasingly evident that alterations in the regulation of LD physiology and metabolism influence the risk of developing metabolic diseases such as diabetes. In this review we provide an update on the role of LD-associated proteins and LDs in metabolic disease.


Journal of Biological Chemistry | 2007

Control of adipose triglyceride lipase action by serine 517 of perilipin A globally regulates protein kinase A-stimulated lipolysis in adipocytes

Hideaki Miyoshi; James W. Perfield; Sandra C. Souza; Wen-Jun Shen; Hui-Hong Zhang; Zlatina S. Stancheva; Fredric B. Kraemer; Martin S. Obin; Andrew S. Greenberg

Phosphorylation of the lipid droplet-associated protein perilipin A (Peri A) mediates the actions of cyclic AMP-dependent protein kinase A (PKA) to stimulate triglyceride hydrolysis (lipolysis) in adipocytes. Studies addressing how Peri A PKA sites regulate adipocyte lipolysis have relied on non-adipocyte cell models, which express neither adipose triglyceride lipase (ATGL), the rate-limiting enzyme for triglyceride catabolism in mice, nor the “downstream” lipase, hormone-sensitive lipase (HSL). ATGL and HSL are robustly expressed by adipocytes that we generated from murine embryonic fibroblasts of perilipin knock-out mice. Adenoviral expression of Peri A PKA site mutants in these cells reveals that mutation of serine 517 alone is sufficient to abrogate 95% of PKA (forskolin)-stimulated fatty acid (FA) and glycerol release. Moreover, a “phosphomimetic” (aspartic acid) substitution at serine 517 enhances PKA-stimulated FA release over levels obtained with wild type Peri A. Studies with ATGL-and HSL-directed small hairpin RNAs demonstrate that 1) ATGL activity is required for all PKA-stimulated FA and glycerol release in murine embryonic fibroblast adipocytes and 2) all PKA-stimulated FA release in the absence of HSL activity requires serine 517 phosphorylation. These results provide the first demonstration that Peri A regulates ATGL-dependent lipolysis and identify serine 517 as the Peri A PKA site essential for this regulation. The contributions of other PKA sites to PKA-stimulated lipolysis are manifested only in the presence of phosphorylated or phosphomimetic serine 517. Thus, serine 517 is a novel “master regulator” of PKA-stimulated adipocyte lipolysis.


Journal of Biological Chemistry | 2006

Perilipin Promotes Hormone-sensitive Lipase-mediated Adipocyte Lipolysis via Phosphorylation-dependent and -independent Mechanisms

Hideaki Miyoshi; Sandra C. Souza; Hui-Hong Zhang; Katherine J. Strissel; Marcelo A. Christoffolete; Julia Kovsan; Assaf Rudich; Fredric B. Kraemer; Antonio C. Bianco; Martin S. Obin; Andrew S. Greenberg

Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein. It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis. Using adipocytes retrovirally engineered from murine embryonic fibroblasts of perilipin null mice (Peri–/– MEF), we demonstrate by cell fractionation and confocal microscopy that up to 50% of cellular HSL is LD-associated in the basal state and that PKA-stimulated HSL translocation is fully supported by adenoviral expression of a mutant perilipin lacking all six PKA sites (Peri AΔ1–6). PKA-stimulated HSL translocation was confirmed in differentiated brown adipocytes from perilipin null mice expressing an adipose-specific Peri AΔ1–6 transgene. Thus, PKA-induced HSL translocation was independent of perilipin phosphorylation. However, Peri AΔ1–6 failed to enhance PKA-stimulated lipolysis in either MEF adipocytes or differentiated brown adipocytes. Thus, the lipolytic action(s) of HSL at the LD surface requires PKA-dependent perilipin phosphorylation. In Peri–/– MEF adipocytes, PKA activation significantly enhanced the amount of HSL that could be cross-linked to and co-immunoprecipitated with ectopic Peri A. Notably, this enhanced cross-linking was blunted in Peri–/– MEF adipocytes expressing Peri AΔ1–6. This suggests that PKA-dependent perilipin phosphorylation facilitates (either direct or indirect) perilipin interaction with LD-associated HSL. These results redefine and expand our understanding of how perilipin regulates HSL-mediated lipolysis in adipocytes.


Journal of Biological Chemistry | 2008

AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte: POTENTIAL MECHANISM AND PHYSIOLOGICAL RELEVANCE*

Marie-Soleil Gauthier; Hideaki Miyoshi; Sandra C. Souza; José M. Cacicedo; Asish K. Saha; Andrew S. Greenberg; Neil B. Ruderman

AMP-activated protein kinase (AMPK) is activated in adipocytes during exercise and other states in which lipolysis is stimulated. However, the mechanism(s) responsible for this effect and its physiological relevance are unclear. To examine these questions, 3T3-L1 adipocytes were treated with cAMP-inducing agents (isoproterenol, forskolin, and isobutylmethylxanthine), which stimulate lipolysis and activate AMPK. When lipolysis was partially inhibited with the general lipase inhibitor orlistat, AMPK activation by these agents was also partially reduced, but the increases in cAMP levels and cAMP-dependent protein kinase (PKA) activity were unaffected. Likewise, small hairpin RNA-mediated silencing of adipose tissue triglyceride lipase inhibited both forskolin-stimulated lipolysis and AMPK activation but not that of PKA. Forskolin treatment increased the AMP:ATP ratio, and this too was reduced by orlistat. When acyl-CoA synthetase, which catalyzes the conversion of fatty acids to fatty acyl-CoA, was inhibited with triacsin C, the increases in both AMPK activity and AMP:ATP ratio were blunted. Isoproterenol-stimulated lipolysis was accompanied by an increase in oxidative stress, an effect that was quintupled in cells incubated with the AMPK inhibitor compound C. The isoproterenol-induced increase in the AMP:ATP ratio was also much greater in these cells. In conclusion, the results indicate that activation of AMPK in adipocytes by cAMP-inducing agents is a consequence of lipolysis and not of PKA activation. They suggest that AMPK activation in this setting is caused by an increase in the AMP:ATP ratio that appears to be due, at least in part, to the acylation of fatty acids. Finally, this AMPK activation appears to restrain the energy depletion and oxidative stress caused by lipolysis.


Journal of Lipid Research | 2009

Functional interaction of hormone-sensitive lipase and perilipin in lipolysis

Wen-Jun Shen; Shailja Patel; Hideaki Miyoshi; Andrew S. Greenberg; Fredric B. Kraemer

Adipocyte lipolysis is controlled by complex interactions of lipases, cofactors, and structural proteins associated with lipid droplets. Perilipin (Plin) A is a major droplet-associated protein that functions as a scaffold, both suppressing basal and facilitating cAMP-dependent protein kinase (PKA)-stimulated lipolysis. Plin is required for the translocation of hormone-sensitive lipase (HSL) from the cytosol to lipid droplets upon stimulation. In these studies, we provide direct evidence for a physical interaction of HSL with Plin. By coexpressing HSL with truncation mutations of Plin, we demonstrate using coimmunoprecipitation that HSL can interact with an N-terminal region located between amino acids 141 and 200 of Plin A as well as with a C-terminal region located between amino acids 406 and 480. The N-terminal construct, Plin 1-200, which does not associate with lipid droplets but interacts with HSL, can function as a dominant negative for PKA-stimulated lipolysis. Using confocal microscopy of Plin truncations, we demonstrate that sequences between amino acids 463 and 517 may be important for or participate in lipid targeting. The results suggest the translocation of HSL to the lipid droplet occurs by virtue of Plin localization to the surface of lipid droplets and a physical interaction of HSL occurring with sequences within the N-terminal region of Plin.


PLOS ONE | 2010

Perilipin Overexpression in White Adipose Tissue Induces a Brown Fat-Like Phenotype

Takashi Sawada; Hideaki Miyoshi; Kohei Shimada; Akira Suzuki; Yuko Okamatsu-Ogura; James W. Perfield; Takuma Kondo; So Nagai; Chikara Shimizu; Narihito Yoshioka; Andrew S. Greenberg; Kazuhiro Kimura; Takao Koike

Background Perilipin A (PeriA) exclusively locates on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Previously, we reported that adipocyte specific overexpression of PeriA caused resistance to diet-induced obesity and resulted in improved insulin sensitivity. In order to better understand the biological basis for this observed phenotype, we performed additional studies in this transgenic mouse model. Methodology and Principal Findings When compared to control animals, whole body energy expenditure was increased in the transgenic mice. Subsequently, we performed DNA microarray analysis and real-time PCR on white adipose tissue. Consistent with the metabolic chamber data, we observed increased expression of genes associated with fatty acid β-oxidation and heat production, and a decrease in the genes associated with lipid synthesis. Gene expression of Pgc1a, a regulator of fatty acid oxidation and Ucp1, a brown adipocyte specific protein, was increased in the white adipose tissue of the transgenic mice. This observation was subsequently verified by both Western blotting and histological examination. Expression of RIP140, a regulator of white adipocyte differentiation, and the lipid droplet protein FSP27 was decreased in the transgenic mice. Importantly, FSP27 has been shown to control gene expression of these crucial metabolic regulators. Overexpression of PeriA in 3T3-L1 adipocytes also reduced FSP27 expression and diminished lipid droplet size. Conclusions These findings demonstrate that overexpression of PeriA in white adipocytes reduces lipid droplet size by decreasing FSP27 expression and thereby inducing a brown adipose tissue-like phenotype. Our data suggest that modulation of lipid droplet proteins in white adipocytes is a potential therapeutic strategy for the treatment of obesity and its related disorders.


Journal of Lipid Research | 2010

Perilipin overexpression in mice protects against diet-induced obesity

Hideaki Miyoshi; Sandra C. Souza; Mikiko Endo; Takashi Sawada; James W. Perfield; Chikara Shimizu; Zlatina S. Stancheva; So Nagai; Katherine J. Strissel; Narihito Yoshioka; Martin S. Obin; Takao Koike; Andrew S. Greenberg

Perilipin A is the most abundant phosphoprotein on adipocyte lipid droplets and is essential for lipid storage and lipolysis. Perilipin null mice exhibit diminished adipose tissue, elevated basal lipolysis, reduced catecholamine-stimulated lipolysis, and increased insulin resistance. To understand the physiological consequences of increased perilipin expression in vivo, we generated transgenic mice that overexpressed either human or mouse perilipin using the adipocyte-specific aP2 promoter/enhancer. Phenotypes of female transgenic and wild-type mice were characterized on chow and high-fat diets (HFDs). When challenged with an HFD, transgenic mice exhibited lower body weight, fat mass, and adipocyte size than wild-type mice. Expression of oxidative genes was increased and lipogenic genes decreased in brown adipose tissue of transgenic mice. Basal and catecholamine-stimulated lipolysis was decreased and glucose tolerance significantly improved in transgenic mice fed a HFD. Perilipin overexpression in adipose tissue protects against HFD-induced adipocyte hypertrophy, obesity, and glucose intolerance. Alterations in brown adipose tissue metabolism may mediate the effects of perilipin overexpression on body fat, although the mechanisms by which perilipin overexpression alters brown adipose tissue metabolism remain to be determined. Our findings demonstrate a novel role for perilipin expression in adipose tissue metabolism and regulation of obesity and its metabolic complications.


Journal of Lipid Research | 2007

Perilipin regulates the thermogenic actions of norepinephrine in brown adipose tissue

Sandra C. Souza; Marcelo A. Christoffolete; Miriam O. Ribeiro; Hideaki Miyoshi; Katherine J. Strissel; Zlatina S. Stancheva; Nicole H. Rogers; Tara M. D'Eon; James W. Perfield; Hitomi Imachi; Martin S. Obin; Antonio C. Bianco; Andrew S. Greenberg

In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin, a lipid droplet-associated protein that is the major regulator of lipolysis. We investigated the role of perilipin PKA phosphorylation in BAT NE-stimulated thermogenesis using a novel mouse model in which a mutant form of perilipin, lacking all six PKA phosphorylation sites, is expressed in adipocytes of perilipin knockout (Peri KO) mice. Here, we show that despite a normal mitochondrial respiratory capacity, NE-induced lipolysis is abrogated in the interscapular brown adipose tissue (IBAT) of these mice. This lipolytic constraint is accompanied by a dramatic blunting (∼70%) of the in vivo thermal response to NE. Thus, in the presence of perilipin, PKA-mediated perilipin phosphorylation is essential for NE-dependent lipolysis and full adaptive thermogenesis in BAT. In IBAT of Peri KO mice, increased basal lipolysis attributable to the absence of perilipin is sufficient to support a rapid NE-stimulated temperature increase (∼3.0°C) comparable to that in wild-type mice. This observation suggests that one or more NE-dependent mechanism downstream of perilipin phosphorylation is required to initiate and/or sustain the IBAT thermal response.


PLOS ONE | 2015

A Comparison of the Effects of the GLP-1 Analogue Liraglutide and Insulin Glargine on Endothelial Function and Metabolic Parameters : A Randomized, Controlled Trial Sapporo Athero-Incretin Study 2 (SAIS2)

Hiroshi Nomoto; Hideaki Miyoshi; Tomoo Furumoto; Koji Oba; Hiroyuki Tsutsui; Arina Miyoshi; Takuma Kondo; Ken-ichi Tsuchida; Tatsuya Atsumi; Naoki Manda; Yoshio Kurihara; Shin Aoki

Objectives GLP-1 improves hyperglycemia, and it has been reported to have favorable effects on atherosclerosis. However, it has not been fully elucidated whether GLP-1 is able to improve endothelial function in patients with type 2 diabetes. Therefore, we investigated the efficacy of the GLP-1 analogue, liraglutide on endothelial function and glycemic metabolism compared with insulin glargine therapy. Materials and Methods In this multicenter, prospective randomized parallel-group comparison study, 31 diabetic outpatients (aged 60.3 ± 10.3 years with HbA1c levels of 8.6 ± 0.8%) with current metformin and/or sulfonylurea treatment were enrolled and randomly assigned to receive liraglutide or glargine therapy once daily for 14 weeks. Flow mediated dilation (FMD), a comprehensive panel of hemodynamic parameters (Task Force Monitor), and serum metabolic markers were assessed before and after the treatment period. Results A greater reduction (worsening) in %FMD was observed in the glargine group, although this change was not statistically different from the liraglutide group (liraglutide; 5.7 to 5.4%, glargine 6.7 to 5.7%). The augmentation index, C-peptide index, derivatives of reactive oxygen metabolites and BMI were significantly improved in the liraglutide group. Central systolic blood pressure and NT-proBNP also tended to be improved in the liraglutide-treated group, while improvements in HbA1c levels were similar between groups. Cardiac index, blood pressure and most other metabolic parameters were not different. Conclusions Regardless of glycemic improvement, early liraglutide therapy did not affect endothelial function but may provide favorable effects on beta-cell function and cardioprotection in type 2 diabetics without advanced atherosclerosis. Trial Registration UMIN Clinical Trials Registry System as trial ID UMIN000005331.

Collaboration


Dive into the Hideaki Miyoshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuo Terauchi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge