Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideaki Nakajima is active.

Publication


Featured researches published by Hideaki Nakajima.


Blood | 2011

Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: Lessons from clinical data and BMT models

Naoko Kato; Jiro Kitaura; Noriko Doki; Yukiko Komeno; Naoko Watanabe-Okochi; Katsuhiro Togami; Fumio Nakahara; Toshihiko Oki; Yutaka Enomoto; Yumi Fukuchi; Hideaki Nakajima; Yuka Harada; Hironori Harada; Toshio Kitamura

Two types of mutations of a transcription factor CCAAT-enhancer binding protein α (C/EBPα) are found in leukemic cells of 5%-14% of acute myeloid leukemia (AML) patients: N-terminal mutations expressing dominant negative p30 and C-terminal mutations in the basic leucine zipper domain. Our results showed that a mutation of C/EBPα in one allele was observed in AML after myelodysplastic syndrome, while the 2 alleles are mutated in de novo AML. Unlike an N-terminal frame-shift mutant (C/EBPα-N(m))-transduced cells, a C-terminal mutant (C/EBPα-C(m))-transduced cells alone induced AML with leukopenia in mice 4-12 months after bone marrow transplantation. Coexpression of both mutants induced AML with marked leukocytosis with shorter latencies. Interestingly, C/EBPα-C(m) collaborated with an Flt3-activating mutant Flt3-ITD in inducing AML. Moreover, C/EBPα-C(m) strongly blocked myeloid differentiation of 32Dcl3 cells, suggesting its class II mutation-like role in leukemogenesis. Although C/EBPα-C(m) failed to inhibit transcriptional activity of wild-type C/EBPα, it suppressed the synergistic effect between C/EBPα and PU.1. On the other hand, C/EBPα-N(m) inhibited C/EBPα activation in the absence of PU.1, despite low expression levels of p30 protein generated by C/EBPα-N(m). Thus, 2 types of C/EBPα mutations are implicated in leukemo-genesis, involving different and cooperating molecular mechanisms.


Leukemia Research | 1996

All-trans and 9-cis retinoic acid enhance 1,25-dihydroxyvitamin D3-induced monocytic differentiation of U937 cells

Hideaki Nakajima; Masahiro Kizaki; Hironori Ueno; Akihiro Muto; Nobuyuki Takayama; Hiromichi Matsushita; Akira Sonoda; Yasuo Ikeda

Retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (D3) are well known for inducing differentiation in many leukemic cell lines. The nuclear signalling pathways of RA and D3 are mediated through their cognate receptors, the retinoic acid receptor (RAR) and vitamin D3 receptor (VDR), respectively. Retinoid X receptor (RXR) is an auxiliary factor that forms a heterodimer with RAR and VDR, enabling their efficient transcriptional activation. 9-cis RA, a high-affinity ligand for RXR, greatly enhanced D3-induced CD14 expression in U937 cells, while RA alone did not induce CD14 expression. 9-cis RA also resulted in morphological changes of U937 cells to macrophage-like cells when combined with D3, while RA alone resulted in granulocyte-like cells. RA and D3 together enhanced c-fms expression, phagocytic activity, and acted synergistically to promote nitroblue tetrazolium reduction activity and inhibit proliferation. Northern analysis showed that U937 cells constitutively expressed RAR-alpha, VDR and RXR-alpha mRNAs. RA or D3 alone or in combination did not affect RAR-alpha and VDR expression, while 9-cis RA and 9-cis RA plus all-trans RA significantly reduced RXR-alpha expression. Interestingly, D3 could restore the down-regulation of RXR-alpha mRNA by 9-cis RA. These findings suggest that there is crossover of the nuclear signalling pathways of RA and D3. This may have clinical implications in that RA and D3 may be used in combination for differentiation-inducing therapy in acute myelogenous leukemia and myelodysplastic syndrome.


Scientific Reports | 2012

Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells

Hiroyoshi Kunimoto; Yumi Fukuchi; Masatoshi Sakurai; Ken Sadahira; Yasuo Ikeda; Shinichiro Okamoto; Hideaki Nakajima

Somatic mutation of ten-eleven translocation 2 (TET2) gene is frequently found in human myeloid malignancies. Recent reports showed that loss of Tet2 led to pleiotropic hematopoietic abnormalities including increased competitive repopulating capacity of bone marrow (BM) HSCs and myeloid transformation. However, precise impact of Tet2 loss on the function of fetal liver (FL) HSCs has not been examined. Here we show that disruption of Tet2 results in the expansion of Lin−Sca-1+c-Kit+ (LSK) cells in FL. Furthermore, Tet2 loss led to enhanced self-renewal and long-term repopulating capacity of FL-HSCs in in vivo serial transplantation assay. Disruption of Tet2 in FL also led to altered differentiation of mature blood cells, expansion of common myeloid progenitors and increased resistance for hematopoietic progenitor cells (HPCs) to differentiation stimuli in vitro. These results demonstrate that Tet2 plays a critical role in homeostasis of HSCs and HPCs not only in the BM, but also in FL.


Cancer Science | 2014

TET2 as an epigenetic master regulator for normal and malignant hematopoiesis

Hideaki Nakajima; Hiroyoshi Kunimoto

DNA methylation is one of the critical epigenetic modifications regulating various cellular processes such as differentiation or proliferation, and its dysregulation leads to disordered stem cell function or cellular transformation. The ten‐eleven translocation (TET) gene family, initially found as a chromosomal translocation partner in leukemia, turned out to be a key enzyme for DNA demethylation. TET genes hydroxylate 5‐methylcytosine to 5‐hydroxymethylcytosine, which is then converted to unmodified cytosine through multiple mechanisms. Somatic mutations of the TET2 gene were reported in a variety of human hematological malignancies such as leukemia, myelodysplastic syndrome, and malignant lymphoma, suggesting a critical role for TET2 in hematopoiesis. The importance of the TET‐mediated cytosine demethylation pathway is also underscored by a recurrent mutation of isocitrate dehydrogenase 1 (IDH1) and IDH2 in hematological malignancies, whose mutation inhibits TET function through a novel oncometabolite, 2‐hydroxyglutarate. Studies using mouse models revealed that TET2 is critical for the function of hematopoietic stem cells, and disruption of TET2 results in the expansion of multipotent as well as myeloid progenitors, leading to the accumulation of premalignant clones. In addition to cytosine demethylation, TET proteins are involved in chromatin modifications and other cellular processes through the interaction with O‐linked β‐N‐acetylglucosamine transferase. In summary, TET2 is a critical regulator for hematopoietic stem cell homeostasis whose functional impairment leads to hematological malignancies. Future studies will uncover the whole picture of epigenetic and signaling networks wired with TET2, which will help to develop ways to intervene in cellular pathways dysregulated by TET2 mutations.


Leukemia | 2009

Mixed-lineage-leukemia (MLL) fusion protein collaborates with Ras to induce acute leukemia through aberrant Hox expression and Raf activation

Ryoichi Ono; Hidetoshi Kumagai; Hideaki Nakajima; A. Hishiya; Tomohiko Taki; Keisuke Horikawa; Kiyoshi Takatsu; Takaya Satoh; Yasuhide Hayashi; Toshio Kitamura; Tetsuya Nosaka

Mixed-lineage-leukemia (MLL) fusion oncogenes are closely involved in infant acute leukemia, which is frequently accompanied by mutations or overexpression of FMS-like receptor tyrosine kinase 3 (FLT3). Earlier studies have shown that MLL fusion proteins induced acute leukemia together with another mutation, such as an FLT3 mutant, in mouse models. However, little has hitherto been elucidated regarding the molecular mechanism of the cooperativity in leukemogenesis. Using murine model systems of the MLL-fusion-mediated leukemogenesis leading to oncogenic transformation in vitro and acute leukemia in vivo, this study characterized the molecular network in the cooperative leukemogenesis. This research revealed that MLL fusion proteins cooperated with activation of Ras in vivo, which was substitutable for Raf in vitro, synergistically, but not with activation of signal transducer and activator of transcription 5 (STAT5), to induce acute leukemia in vivo as well as oncogenic transformation in vitro. Furthermore, Hoxa9, one of the MLL-targeted critical molecules, and activation of Ras in vivo, which was replaceable with Raf in vitro, were identified as fundamental components sufficient for mimicking MLL-fusion-mediated leukemogenesis. These findings suggest that the molecular crosstalk between aberrant expression of Hox molecule(s) and activated Raf may have a key role in the MLL-fusion-mediated-leukemogenesis, and may thus help develop the novel molecularly targeted therapy against MLL-related leukemia.


Leukemia | 2014

Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients

Masatoshi Sakurai; Hiroyoshi Kunimoto; Naohide Watanabe; Yumi Fukuchi; Shinsuke Yuasa; Satoshi Yamazaki; Toshinobu Nishimura; Ken Sadahira; Keiichi Fukuda; Hideyuki Okano; Hiromitsu Nakauchi; Yasuyoshi Morita; Itaru Matsumura; Ko Kudo; Etsuro Ito; Yasuhiro Ebihara; Koichiro Tsuji; Yuka Harada; Hironori Harada; Shinichiro Okamoto; Hideaki Nakajima

Somatic mutation of RUNX1 is implicated in various hematological malignancies, including myelodysplastic syndrome and acute myeloid leukemia (AML), and previous studies using mouse models disclosed its critical roles in hematopoiesis. However, the role of RUNX1 in human hematopoiesis has never been tested in experimental settings. Familial platelet disorder (FPD)/AML is an autosomal dominant disorder caused by germline mutation of RUNX1, marked by thrombocytopenia and propensity to acute leukemia. To investigate the physiological function of RUNX1 in human hematopoiesis and pathophysiology of FPD/AML, we derived induced pluripotent stem cells (iPSCs) from three distinct FPD/AML pedigrees (FPD-iPSCs) and examined their defects in hematopoietic differentiation. By in vitro differentiation assays, FPD-iPSCs were clearly defective in the emergence of hematopoietic progenitors and differentiation of megakaryocytes, and overexpression of wild-type (WT)-RUNX1 reversed most of these phenotypes. We further demonstrated that overexpression of mutant-RUNX1 in WT-iPSCs did not recapitulate the phenotype of FPD-iPSCs, showing that the mutations were of loss-of-function type. Taken together, this study demonstrated that haploinsufficient RUNX1 allele imposed cell-intrinsic defects on hematopoietic differentiation in human experimental settings and revealed differential impacts of RUNX1 dosage on human and murine megakaryopoiesis. FPD-iPSCs will be a useful tool to investigate mutant RUNX1-mediated molecular processes in hematopoiesis and leukemogenesis.


International Journal of Oncology | 2014

Gossypol induces apoptosis in multiple myeloma cells by inhibition of interleukin-6 signaling and Bcl-2/Mcl-1 pathway

Ken Sadahira; Morihiko Sagawa; Tomonori Nakazato; Hideo Uchida; Yasuo Ikeda; Shinichiro Okamoto; Hideaki Nakajima; Masahiro Kizaki

Multiple myeloma (MM) is a clonal plasma cell disorder affecting the immune system with various systemic symptoms. MM remains incurable even with high dose chemotherapy using conventional drugs, thus necessitating development of novel therapeutic strategies. Gossypol (Gos) is a natural polyphenolic compound extracted from cotton plants, and has been shown to possess anti-neoplastic activity against various tumors. Recent studies have shown that Gos is an inhibitor for Bcl-2 or Bcl-XL acting as BH3 mimetics that interfere interaction between pro-apoptotic BH3-only proteins and Bcl-2/Bcl-XL. Since most of the patients with MM overexpress Bcl-2 protein, we considered Gos might be a promising therapeutic agent for MM. We herein show that Gos efficiently induced apoptosis and inhibited proliferation of the OPM2 MM cell line, in a dose- and time-dependent manner. Gos induced activation of caspase-3 and cytochrome c release from mitochondria, showing mitochondrial dysfunction pathway is operational during apoptosis. Further investigation revealed that phosphorylation of Bcl-2 at serine-70 was attenuated by Gos treatment, while protein levels were not affected. In addition, Mcl-1 was downregulated by Gos. Interestingly, phosphorylation of JAK2, STAT3, ERK1/2 and p38MAPK was inhibited by Gos-treatment, indicating that Gos globally suppressed interleukin-6 (IL-6) signals. Moreover, JAK2 inhibition mimicked the effect of Gos in OPM2 cells including Bcl-2 dephosphorylation and Mcl-1 downregulation. These results demonstrated that Gos induces apoptosis in MM cells not only through displacing BH3-only proteins from Bcl-2, but also through inhibiting IL-6 signaling, which leads to Bcl-2 dephosphorylation and Mcl-1 downregulation.


Blood Cancer Journal | 2016

Genetic basis of myeloid transformation in familial platelet disorder/acute myeloid leukemia patients with haploinsufficient RUNX1 allele

Masatoshi Sakurai; Haruo Kasahara; Keiichi Yoshida; Akira Yoshimi; Hiroyoshi Kunimoto; Nobuharu Watanabe; Yasuyuki Shiraishi; Kenichi Chiba; Hirotoshi Tanaka; Yoshimitsu Harada; Hiroshi Harada; Tetsuya Kawakita; Munetaka Kurokawa; Satoru Miyano; Satoshi Takahashi; Shino Ogawa; Sachiko Okamoto; Hideaki Nakajima

Genetic basis of myeloid transformation in familial platelet disorder/acute myeloid leukemia patients with haploinsufficient RUNX1 allele


Blood | 2013

Plzf drives MLL-fusion-mediated leukemogenesis specifically in long-term hematopoietic stem cells.

Ryoichi Ono; Masahiro Masuya; Hideaki Nakajima; Yutaka Enomoto; Eri Miyata; Akihide Nakamura; Satomi Ishii; Kei Suzuki; Fumi Shibata-Minoshima; Naoyuki Katayama; Toshio Kitamura; Tetsuya Nosaka

Oncogenic transformation requires unlimited self-renewal. Currently, it remains unclear whether a normal capacity for self-renewal is required for acquiring an aberrant self-renewal capacity. Our results in a new conditional transgenic mouse showed that a mixed lineage leukemia (MLL) fusion oncogene, MLL-ENL, at an endogenous-like expression level led to leukemic transformation selectively in a restricted subpopulation of hematopoietic stem cells (HSCs) through upregulation of promyelocytic leukemia zinc finger (Plzf). Interestingly, forced expression of Plzf itself immortalized HSCs and myeloid progenitors in vitro without upregulation of Hoxa9/Meis1, which are well-known targets of MLL fusion proteins, whereas its mutant lacking the BTB/POZ domain did not. In contrast, depletion of Plzf suppressed the MLL-fusion-induced leukemic transformation of HSCs in vitro and in vivo. Gene expression analyses of human clinical samples showed that a subtype of PLZF-high MLL-rearranged myeloid leukemia cells was closely associated with the gene expression signature of HSCs. These findings suggested that MLL fusion protein enhances the self-renewal potential of normal HSCs to develop leukemia, in part through a Plzf-driven self-renewal program.


Annals of Oncology | 2016

Spectrum of clinical and genetic features of patients with inherited platelet disorder with suspected predisposition to hematological malignancies: a nationwide survey in Japan

Akihide Yoshimi; Takashi Toya; Yasuhito Nannya; K. Takaoka; Keita Kirito; Etsuro Ito; Hideaki Nakajima; Yasutaka Hayashi; T. Takahashi; A. Moriya-Saito; Kenshi Suzuki; Hironori Harada; Norio Komatsu; Kensuke Usuki; Motoshi Ichikawa; Mineo Kurokawa

BACKGROUNDnInherited thrombocytopenia (IT) contains several forms of familial thrombocytopenia and some of them have propensity to hematological malignancies. The etiological and genetic features of this heterogeneous syndrome have not yet been elucidated.nnnPATIENTS AND METHODSnWe conducted a nationwide survey to collect clinical information and samples from patients with familial thrombocytopenia and/or hematological malignancies in order to obtain a comprehensive understanding of IT.nnnRESULTSnAmong the 43 pedigrees with clinical samples, RUNX1 mutations were identified in 8 pedigrees (18.6%). While MYH9 and ANKRD26 mutations were identified in 2 and 1 pedigrees, respectively, no gene mutations were detected in the remaining 32 pedigrees from a panel of previously reported pathogenetic mutations. Clinical data were comparable between FPD/AML and non-FPD/AML probands.nnnCONCLUSIONSnOur study clarified that it is unexpectedly difficult to diagnose FPD/AML based on clinical information alone, and thus, genetic testing is strongly recommended. Our survey also identified some pedigrees with a strong family history of myelodysplastic syndromes of unknown origin. Additionally, there were 14 pedigrees in which three or more members were affected by immune thrombocytopenia (ITP), and a computer-aided simulation suggested that such a distribution almost never happens by coincidence, which implicates a genetic predisposition to ITP.

Collaboration


Dive into the Hideaki Nakajima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge