Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidehiro Toh is active.

Publication


Featured researches published by Hidehiro Toh.


Nature | 2011

Bifidobacteria can protect from enteropathogenic infection through production of acetate

Shinji Fukuda; Hidehiro Toh; Koji Hase; Kenshiro Oshima; Yumiko Nakanishi; Kazutoshi Yoshimura; Toru Tobe; Julie M. Clarke; David L. Topping; Tohru Suzuki; Todd D. Taylor; Kikuji Itoh; Jun Kikuchi; Hidetoshi Morita; Masahira Hattori; Hiroshi Ohno

The human gut is colonized with a wide variety of microorganisms, including species, such as those belonging to the bacterial genus Bifidobacterium, that have beneficial effects on human physiology and pathology. Among the most distinctive benefits of bifidobacteria are modulation of host defence responses and protection against infectious diseases. Nevertheless, the molecular mechanisms underlying these effects have barely been elucidated. To investigate these mechanisms, we used mice associated with certain bifidobacterial strains and a simplified model of lethal infection with enterohaemorrhagic Escherichia coli O157:H7, together with an integrated ‘omics’ approach. Here we show that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting mice against death induced by E. coli O157:H7. We found that this effect can be attributed, at least in part, to increased production of acetate and that translocation of the E. coli O157:H7 Shiga toxin from the gut lumen to the blood was inhibited. We propose that acetate produced by protective bifidobacteria improves intestinal defence mediated by epithelial cells and thereby protects the host against lethal infection.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Comparative genomics reveal the mechanism of the parallel evolution of O157 and non-O157 enterohemorrhagic Escherichia coli

Yoshitoshi Ogura; Tadasuke Ooka; Atsushi Iguchi; Hidehiro Toh; Asadulghani; Kenshiro Oshima; Toshio Kodama; Hiroyuki Abe; Keisuke Nakayama; Ken Kurokawa; Toru Tobe; Masahira Hattori; Tetsuya Hayashi

Among the various pathogenic Escherichia coli strains, enterohemorrhagic E. coli (EHEC) is the most devastating. Although serotype O157:H7 strains are the most prevalent, strains of different serotypes also possess similar pathogenic potential. Here, we present the results of a genomic comparison between EHECs of serotype O157, O26, O111, and O103, as well as 21 other, fully sequenced E. coli/Shigella strains. All EHECs have much larger genomes (5.5–5.9 Mb) than the other strains and contain surprisingly large numbers of prophages and integrative elements (IEs). The gene contents of the 4 EHECs do not follow the phylogenetic relationships of the strains, and they share virulence genes for Shiga toxins and many other factors. We found many lambdoid phages, IEs, and virulence plasmids that carry the same or similar virulence genes but have distinct evolutionary histories, indicating that independent acquisition of these mobile genetic elements has driven the evolution of each EHEC. Particularly interesting is the evolution of the type III secretion system (T3SS). We found that the T3SS of EHECs is composed of genes that were introduced by 3 different types of genetic elements: an IE referred to as the locus of enterocyte effacement, which encodes a central part of the T3SS; SpLE3-like IEs; and lambdoid phages carrying numerous T3SS effector genes and other T3SS-related genes. Our data demonstrate how E. coli strains of different phylogenies can independently evolve into EHECs, providing unique insights into the mechanisms underlying the parallel evolution of complex virulence systems in bacteria.


DNA Research | 2008

Determination of the genome sequence of Porphyromonas gingivalis strain ATCC 33277 and genomic comparison with strain W83 revealed extensive genome rearrangements in P. gingivalis.

Mariko Naito; Hideki Hirakawa; Atsushi Yamashita; Naoya Ohara; Mikio Shoji; Hideharu Yukitake; Keisuke Nakayama; Hidehiro Toh; Fuminobu Yoshimura; Masahira Hattori; Tetsuya Hayashi; Koji Nakayama

The gram-negative anaerobic bacterium Porphyromonas gingivalis is a major causative agent of chronic periodontitis. Porphyromonas gingivalis strains have been classified into virulent and less-virulent strains by mouse subcutaneous soft tissue abscess model analysis. Here, we present the whole genome sequence of P. gingivalis ATCC 33277, which is classified as a less-virulent strain. We identified 2090 protein-coding sequences (CDSs), 4 RNA operons, and 53 tRNA genes in the ATCC 33277 genome. By genomic comparison with the virulent strain W83, we identified 461 ATCC 33277-specific and 415 W83-specific CDSs. Extensive genomic rearrangements were observed between the two strains: 175 regions in which genomic rearrangements have occurred were identified. Thirty-five of those genomic rearrangements were inversion or translocation and 140 were simple insertion, deletion, or replacement. Both strains contained large numbers of mobile elements, such as insertion sequences, miniature inverted-repeat transposable elements (MITEs), and conjugative transposons, which are frequently associated with genomic rearrangements. These findings indicate that the mobile genetic elements have been deeply involved in the extensive genome rearrangement of P. gingivalis and the occurrence of many of the strain-specific CDSs. We also describe here a very unique feature of MITE400, which we renamed MITEPgRS (MITE of P. gingivalis with Repeating Sequences).


DNA Research | 2008

Comparative Genome Analysis of Lactobacillus reuteri and Lactobacillus fermentum Reveal a Genomic Island for Reuterin and Cobalamin Production

Hidetoshi Morita; Hidehiro Toh; Shinji Fukuda; Hiroshi Horikawa; Kenshiro Oshima; Takehito Suzuki; Masaru Murakami; Shin Hisamatsu; Yukio Kato; Tatsuya Takizawa; Hideo Fukuoka; Tetsuhiko Yoshimura; Kikuji Itoh; Daniel J. O'Sullivan; Larry L. McKay; Hiroshi Ohno; Jun Kikuchi; Toshio Masaoka; Masahira Hattori

Lactobacillus reuteri is a heterofermentative lactic acid bacterium that naturally inhabits the gut of humans and other animals. The probiotic effects of L. reuteri have been proposed to be largely associated with the production of the broad-spectrum antimicrobial compound reuterin during anaerobic metabolism of glycerol. We determined the complete genome sequences of the reuterin-producing L. reuteri JCM 1112T and its closely related species Lactobacillus fermentum IFO 3956. Both are in the same phylogenetic group within the genus Lactobacillus. Comparative genome analysis revealed that L. reuteri JCM 1112T has a unique cluster of 58 genes for the biosynthesis of reuterin and cobalamin (vitamin B12). The 58-gene cluster has a lower GC content and is apparently inserted into the conserved region, suggesting that the cluster represents a genomic island acquired from an anomalous source. Two-dimensional nuclear magnetic resonance (2D-NMR) with 13C3-glycerol demonstrated that L. reuteri JCM 1112T could convert glycerol to reuterin in vivo, substantiating the potential of L. reuteri JCM 1112T to produce reuterin in the intestine. Given that glycerol is shown to be naturally present in feces, the acquired ability to produce reuterin and cobalamin is an adaptive evolutionary response that likely contributes to the probiotic properties of L. reuteri.


PLOS Genetics | 2013

Mouse Oocyte Methylomes at Base Resolution Reveal Genome-Wide Accumulation of Non-CpG Methylation and Role of DNA Methyltransferases

Kenjiro Shirane; Hidehiro Toh; Hisato Kobayashi; Fumihito Miura; Hatsune Chiba; Takashi Ito; Tomohiro Kono; Hiroyuki Sasaki

DNA methylation is an epigenetic modification that plays a crucial role in normal mammalian development, retrotransposon silencing, and cellular reprogramming. Although methylation mainly occurs on the cytosine in a CG site, non-CG methylation is prevalent in pluripotent stem cells, brain, and oocytes. We previously identified non-CG methylation in several CG-rich regions in mouse germinal vesicle oocytes (GVOs), but the overall distribution of non-CG methylation and the enzymes responsible for this modification are unknown. Using amplification-free whole-genome bisulfite sequencing, which can be used with minute amounts of DNA, we constructed the base-resolution methylome maps of GVOs, non-growing oocytes (NGOs), and mutant GVOs lacking the DNA methyltransferase Dnmt1, Dnmt3a, Dnmt3b, or Dnmt3L. We found that nearly two-thirds of all methylcytosines occur in a non-CG context in GVOs. The distribution of non-CG methylation closely resembled that of CG methylation throughout the genome and showed clear enrichment in gene bodies. Compared to NGOs, GVOs were over four times more methylated at non-CG sites, indicating that non-CG methylation accumulates during oocyte growth. Lack of Dnmt3a or Dnmt3L resulted in a global reduction in both CG and non-CG methylation, showing that non-CG methylation depends on the Dnmt3a-Dnmt3L complex. Dnmt3b was dispensable. Of note, lack of Dnmt1 resulted in a slight decrease in CG methylation, suggesting that this maintenance enzyme plays a role in non-dividing oocytes. Dnmt1 may act on CG sites that remain hemimethylated in the de novo methylation process. Our results provide a basis for understanding the mechanisms and significance of non-CG methylation in mammalian oocytes.


Science | 2008

Genome of an Endosymbiont Coupling N2 Fixation to Cellulolysis Within Protist Cells in Termite Gut

Yuichi Hongoh; Vineet K. Sharma; Tulika Prakash; Satoko Noda; Hidehiro Toh; Todd D. Taylor; Toshiaki Kudo; Yoshiyuki Sakaki; Atsushi Toyoda; Masahira Hattori; Moriya Ohkuma

Termites harbor diverse symbiotic gut microorganisms, the majority of which are as yet uncultivable and their interrelationships unclear. Here, we present the complete genome sequence of the uncultured Bacteroidales endosymbiont of the cellulolytic protist Pseudotrichonympha grassii, which accounts for 70% of the bacterial cells in the gut of the termite Coptotermes formosanus. Functional annotation of the chromosome (1,114,206 base pairs) unveiled its ability to fix dinitrogen and recycle putative host nitrogen wastes for biosynthesis of diverse amino acids and cofactors, and import glucose and xylose as energy and carbon sources. Thus, nitrogen fixation and cellulolysis are coupled within the protists cells. This highly evolved symbiotic system probably underlies the ability of the worldwide pest termites Coptotermes to use wood as their sole food.


FEBS Letters | 2012

Anammox organism KSU-1 expresses a NirK-type copper-containing nitrite reductase instead of a NirS-type with cytochrome cd1.

Daisuke Hira; Hidehiro Toh; Catharina T. Migita; Hiroki Okubo; Takashi Nishiyama; Masahira Hattori; Kenji Furukawa; Takao Fujii

Anaerobic ammonium oxidation (anammox) and denitrification are two distinct microbial reactions relevant to the global nitrogen cycle. The proposed initial step of the anammox reactions, reduction of nitrite to nitric oxide, has been postulated to be identical to that in denitrification catalyzed by the dissimilatory nitrite reductase of the cytochrome cd 1‐type. Here, we characterized the copper‐containing nitrite reductase homolog encoded by nirK detected in the genome of an anammox bacterium strain KSU‐1. We hypothesize that this NirK‐type nitrite reductase, rather than a nitrite reductase of the cytochrome cd 1‐type (NirS), is likely to catalyze nitrite reduction in anammox organism KSU‐1.


DNA Research | 2008

Complete genome sequence and comparative analysis of the wild-type commensal escherichia coli strain se11 isolated from a healthy adult

Kenshiro Oshima; Hidehiro Toh; Yoshitoshi Ogura; Hiroyuki Sasamoto; Hidetoshi Morita; Sang Hee Park; Tadasuke Ooka; Sunao Iyoda; Todd D. Taylor; Tetsuya Hayashi; Kikuji Itoh; Masahira Hattori

We sequenced and analyzed the genome of a commensal Escherichia coli (E. coli) strain SE11 (O152:H28) recently isolated from feces of a healthy adult and classified into E. coli phylogenetic group B1. SE11 harbored a 4.8 Mb chromosome encoding 4679 protein-coding genes and six plasmids encoding 323 protein-coding genes. None of the SE11 genes had sequence similarity to known genes encoding phage- and plasmid-borne virulence factors found in pathogenic E. coli strains. The comparative genome analysis with the laboratory strain K-12 MG1655 identified 62 poorly conserved genes between these two non-pathogenic strains and 1186 genes absent in MG1655. These genes in SE11 were mostly encoded in large insertion regions on the chromosome or in the plasmids, and were notably abundant in genes of fimbriae and autotransporters, which are cell surface appendages that largely contribute to the adherence ability of bacteria to host cells and bacterial conjugation. These data suggest that SE11 may have evolved to acquire and accumulate the functions advantageous for stable colonization of intestinal cells, and that the adhesion-associated functions are important for the commensality of E. coli in human gut habitat.


Gut microbes | 2012

Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters.

Shinji Fukuda; Hidehiro Toh; Todd D. Taylor; Hiroshi Ohno; Masahira Hattori

The human gut harbors a large and diverse community of commensal bacteria. Among them, Bifidobacterium is known to exhibit various probiotic effects including protection of hosts from infectious diseases. We recently discovered that genes encoding an ATP-binding-cassette-type carbohydrate transporter present in certain bifidobacteria contribute to protecting gnotobiotic mice from death induced by enterohemorrhagic Escherichia coli O157:H7. We elucidated the molecular mechanism on lethal infection in mice associated with several bifidobacterial strains by a multi-omics approach combining genomics, transcriptomics and metabolomics. The combined data clearly show that acetate produced by protective bifidobacteria acts in vivo to promote defense functions of the host epithelial cells and thereby protects the host from lethal infection. As demonstrated here, our multi-omics approach provides a powerful strategy for evaluation of host-microbial interactions in the complex gut ecosystem.


Journal of Bacteriology | 2009

Complete Genome Sequence of the Probiotic Lactobacillus rhamnosus ATCC 53103

Hidetoshi Morita; Hidehiro Toh; Kenshiro Oshima; Masaru Murakami; Todd D. Taylor; Shizunobu Igimi; Masahira Hattori

Lactobacillus rhamnosus is a facultatively heterofermentative lactic acid bacterium and is frequently isolated from human gastrointestinal mucosa of healthy individuals. L. rhamnosus ATCC 53103, isolated from a healthy human intestinal flora, is one of the most widely used and well-documented probiotics. Here, we report the finished and annotated genome sequence of this organism.

Collaboration


Dive into the Hidehiro Toh's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiyo Nakano

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masaru Murakami

Laboratory of Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge