Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideki Aihara is active.

Publication


Featured researches published by Hideki Aihara.


Nature | 2005

A structural basis for allosteric control of DNA recombination by lambda integrase.

Tapan Biswas; Hideki Aihara; Marta Radman-Livaja; David J. Filman; Arthur Landy; Tom Ellenberger

Site-specific DNA recombination is important for basic cellular functions including viral integration, control of gene expression, production of genetic diversity and segregation of newly replicated chromosomes, and is used by bacteriophage λ to integrate or excise its genome into and out of the host chromosome. λ recombination is carried out by the bacteriophage-encoded integrase protein (λ-int) together with accessory DNA sites and associated bending proteins that allow regulation in response to cell physiology. Here we report the crystal structures of λ-int in higher-order complexes with substrates and regulatory DNAs representing different intermediates along the reaction pathway. The structures show how the simultaneous binding of two separate domains of λ-int to DNA facilitates synapsis and can specify the order of DNA strand cleavage and exchange. An intertwined layer of amino-terminal domains bound to accessory (arm) DNAs shapes the recombination complex in a way that suggests how arm binding shifts the reaction equilibrium in favour of recombinant products.


Journal of Biological Chemistry | 1996

A Possible Role of the C-terminal Domain of the RecA Protein A GATEWAY MODEL FOR DOUBLE-STRANDED DNA BINDING

Hitoshi Kurumizaka; Hideki Aihara; Shukuko Ikawa; Takamitsu Kashima; L. Rochelle Bazemore; Katsumi Kawasaki; Akinori Sarai; Charles M. Radding; Takehiko Shibata

According to the crystal structure, the RecA protein has a domain near the C terminus consisting of amino acid residues 270-328 (from the N terminus). Our model building pointed out the possibility that this domain is a part of “gateway” through which double-stranded DNA finds a path for direct contact with single-stranded DNA within a presynaptic RecA filament in the search for homology. To test this possible function of the domain, we made mutant RecA proteins by site-directed single (or double, in one case) replacement of 2 conserved basic amino acid residues and 5 among 9 nonconserved basic amino acid residues in the domain. Replacement of either of the 2 conserved amino acid residues caused deficiencies in repair of UV-damaged DNA, an in vivo function of RecA protein, whereas the replacement of most (except one) of the tested nonconserved ones gave little or no effect. Purified mutant RecA proteins showed no (or only slight) deficiencies in the formation of presynaptic filaments as assessed by various assays. However, presynaptic filaments of both proteins that had replacement of a conserved amino acid residue had significant defects in binding to and pairing with duplex DNA (secondary binding). These results are consistent with our model that the conserved amino acid residues in the C-terminal domain have a direct role in double-stranded DNA binding and that they constitute a part of a gateway for homologous recognition.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: A possible advantage of DNA over RNA as genomic material

Takehiko Shibata; Taro Nishinaka; Tsutomu Mikawa; Hideki Aihara; Hitoshi Kurumizaka; Shigeyuki Yokoyama; Yutaka Ito

Heteroduplex joints are general intermediates of homologous genetic recombination in DNA genomes. A heteroduplex joint is formed between a single-stranded region (or tail), derived from a cleaved parental double-stranded DNA, and homologous regions in another parental double-stranded DNA, in a reaction mediated by the RecA/Rad51-family of proteins. In this reaction, a RecA/Rad51-family protein first forms a filamentous complex with the single-stranded DNA, and then interacts with the double-stranded DNA in a search for homology. Studies of the three-dimensional structures of single-stranded DNA bound either to Escherichia coli RecA or Saccharomyces cerevisiae Rad51 have revealed a novel extended DNA structure. This structure contains a hydrophobic interaction between the 2′ methylene moiety of each deoxyribose and the aromatic ring of the following base, which allows bases to rotate horizontally through the interconversion of sugar puckers. This base rotation explains the mechanism of the homology search and base-pair switch between double-stranded and single-stranded DNA during the formation of heteroduplex joints. The pivotal role of the 2′ methylene-base interaction in the heteroduplex joint formation is supported by comparing the recombination of RNA genomes with that of DNA genomes. Some simple organisms with DNA genomes induce homologous recombination when they encounter conditions that are unfavorable for their survival. The extended DNA structure confers a dynamic property on the otherwise chemically and genetically stable double-stranded DNA, enabling gene segment rearrangements without disturbing the coding frame (i.e., protein-segment shuffling). These properties may give an extensive evolutionary advantage to DNA.


Molecular Cell | 2003

A Conformational Switch Controls the DNA Cleavage Activity of λ Integrase

Hideki Aihara; Hyock Joo Kwon; Simone E. Nunes-Düby; Arthur Landy; Tom Ellenberger

Abstract The bacteriophage λ integrase protein (λ Int) belongs to a family of tyrosine recombinases that catalyze DNA rearrangements. We have determined a crystal structure of λ Int complexed with a cleaved DNA substrate through a covalent phosphotyrosine bond. In comparison to an earlier unliganded structure, we observe a drastic conformational change in DNA-bound λ Int that brings Tyr342 into the active site for cleavage of the DNA in cis . A flexible linker connects the central and the catalytic domains, allowing the protein to encircle the DNA. Binding specificity is achieved through direct interactions with the DNA and indirect readout of the flexibility of the att site. The conformational switch that activates λ Int for DNA cleavage exposes the C-terminal 8 residues for interactions with a neighboring Int molecule. The protein interactions mediated by λ Ints C-terminal tail offer a mechanism for the allosteric control of cleavage activity in higher order λ Int complexes.


Nature Structural & Molecular Biology | 2017

Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B

Ke Shi; Michael A. Carpenter; Surajit Banerjee; Nadine M. Shaban; Kayo Kurahashi; Daniel J. Salamango; Jennifer L. McCann; Gabriel J. Starrett; Justin V. Duffy; Özlem Demir; Rommie E. Amaro; Daniel A. Harki; Reuben S. Harris; Hideki Aihara

APOBEC-catalyzed cytosine-to-uracil deamination of single-stranded DNA (ssDNA) has beneficial functions in immunity and detrimental effects in cancer. APOBEC enzymes have intrinsic dinucleotide specificities that impart hallmark mutation signatures. Although numerous structures have been solved, mechanisms for global ssDNA recognition and local target-sequence selection remain unclear. Here we report crystal structures of human APOBEC3A and a chimera of human APOBEC3B and APOBEC3A bound to ssDNA at 3.1-Å and 1.7-Å resolution, respectively. These structures reveal a U-shaped DNA conformation, with the specificity-conferring −1 thymine flipped out and the target cytosine inserted deep into the zinc-coordinating active site pocket. The −1 thymine base fits into a groove between flexible loops and makes direct hydrogen bonds with the protein, accounting for the strong 5′-TC preference. These findings explain both conserved and unique properties among APOBEC family members, and they provide a basis for the rational design of inhibitors to impede the evolvability of viruses and tumors.


Nature Structural & Molecular Biology | 2012

Structural basis for recognition of 5′-phosphotyrosine adducts by Tdp2

Ke Shi; Kayo Kurahashi; Rui Gao; Susan E. Tsutakawa; John A. Tainer; Yves Pommier; Hideki Aihara

The DNA-repair enzyme Tdp2 resolves 5′-phosphotyrosyl DNA adducts and mediates resistance to anticancer drugs that target covalent topoisomerase–DNA complexes. Tdp2 also participates in key signaling pathways during development and tumorigenesis and cleaves a protein-RNA linkage during picornavirus replication. The crystal structure of zebrafish Tdp2 bound to DNA reveals a deep, narrow basic groove that selectively accommodates the 5′ end of single-stranded DNA in a stretched conformation. The crystal structure of the full-length Caenorhabditis elegans Tdp2 shows that this groove can also accommodate an acidic peptide stretch in vitro, with glutamate and aspartate side chains occupying the DNA backbone phosphate–binding sites. This extensive molecular mimicry suggests a potential mechanism for autoregulation and interaction of Tdp2 with phosphorylated proteins in signaling. Our study provides a framework to interrogate functions of Tdp2 and develop inhibitors for chemotherapeutic and antiviral applications.


Journal of Biological Chemistry | 2015

Crystal Structure of the DNA Deaminase APOBEC3B Catalytic Domain.

Ke Shi; Michael A. Carpenter; Kayo Kurahashi; Reuben S. Harris; Hideki Aihara

Background: APOBEC3B-catalyzed DNA cytosine deamination causes mutations in cancer. Results: We present the first APOBEC3B catalytic domain crystal structures including a dCMP-bound form. Conclusion: A closed active site conformation distinguishes APOBEC3B from related enzymes and suggests that conformational changes are central to the overall single-stranded DNA binding mechanism. Significance: These high resolution structures provide a foundation for inhibitor development. Functional and deep sequencing studies have combined to demonstrate the involvement of APOBEC3B in cancer mutagenesis. APOBEC3B is a single-stranded DNA cytosine deaminase that functions normally as a nuclear-localized restriction factor of DNA-based pathogens. However, it is overexpressed in cancer cells and elicits an intrinsic preference for 5′-TC motifs in single-stranded DNA, which is the most frequently mutated dinucleotide in breast, head/neck, lung, bladder, cervical, and several other tumor types. In many cases, APOBEC3B mutagenesis accounts for the majority of both dispersed and clustered (kataegis) cytosine mutations. Here, we report the first structures of the APOBEC3B catalytic domain in multiple crystal forms. These structures reveal a tightly closed active site conformation and suggest that substrate accessibility is regulated by adjacent flexible loops. Residues important for catalysis are identified by mutation analyses, and the results provide insights into the mechanism of target site selection. We also report a nucleotide (dCMP)-bound crystal structure that informs a multistep model for binding single-stranded DNA. Overall, these high resolution crystal structures provide a framework for further mechanistic studies and the development of novel anti-cancer drugs to inhibit this enzyme, dampen tumor evolution, and minimize adverse outcomes such as drug resistance and metastasis.


Nature Structural & Molecular Biology | 2015

An ancient protein-DNA interaction underlying metazoan sex determination

Mark W. Murphy; John K. Lee; Sandra Rojo; Micah D. Gearhart; Kayo Kurahashi; Surajit Banerjee; Guy André Loeuille; Anu Bashamboo; Ken McElreavey; David Zarkower; Hideki Aihara; Vivian J. Bardwell

DMRT transcription factors are deeply conserved regulators of metazoan sexual development. They share the DM DNA-binding domain, a unique intertwined double zinc-binding module followed by a C-terminal recognition helix, which binds a pseudopalindromic target DNA. Here we show that DMRT proteins use a unique binding interaction, inserting two adjacent antiparallel recognition helices into a widened DNA major groove to make base-specific contacts. Versatility in how specific base contacts are made allows human DMRT1 to use multiple DNA binding modes (tetramer, trimer and dimer). Chromatin immunoprecipitation with exonuclease treatment (ChIP-exo) indicates that multiple DNA binding modes also are used in vivo. We show that mutations affecting residues crucial for DNA recognition are associated with an intersex phenotype in flies and with male-to-female sex reversal in humans. Our results illuminate an ancient molecular interaction underlying much of metazoan sexual development.


Nature | 2016

Crystal structure of the Rous sarcoma virus intasome

Zhiqi Yin; Ke Shi; Surajit Banerjee; Krishan K. Pandey; Sibes Bera; Duane P. Grandgenett; Hideki Aihara

Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNA remained elusive. Here we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.


Skeletal Muscle | 2015

DNA-binding sequence specificity of DUX4.

Yu Zhang; John K. Lee; Erik A. Toso; Joslynn S. Lee; Si Ho Choi; Matthew Slattery; Hideki Aihara; Michael Kyba

BackgroundMisexpression of the double homeodomain transcription factor DUX4 results in facioscapulohumeral muscular dystrophy (FSHD). A DNA-binding consensus with two tandem TAAT motifs based on chromatin IP peaks has been discovered; however, the consensus has multiple variations (flavors) of unknown relative activity. In addition, not all peaks have this consensus, and the Pitx1 promoter, the first DUX4 target sequence mooted, has a different TAAT-rich sequence. Furthermore, it is not known whether and to what extent deviations from the consensus affect DNA-binding affinity and transcriptional activation potential.ResultsHere, we take both unbiased and consensus sequence-driven approaches to determine the DNA-binding specificity of DUX4 and its tolerance to mismatches at each site within its consensus sequence. We discover that the best binding and the greatest transcriptional activation are observed when the two TAAT motifs are separated by a C residue. The second TAAT motif in the consensus sequence is actually (T/C)AAT. We find that a T is preferred here. DUX4 has no transcriptional activity on “half-sites”, i.e., those bearing only a single TAAT motif. We further find that DUX4 does not bind to the TAATTA motif in the Pitx1 promoter, that Pitx1 sequences have no competitive band shift activity, and that the Pitx1 sequence is transcriptionally inactive, calling into question PITX1 as a DUX4 target gene. Finally, by multimerizing binding sites, we find that DUX4 transcriptional activation demonstrates tremendous synergy and that at low DNA concentrations, at least two motifs are necessary to detect a transcriptional response.ConclusionsThese studies illuminate the DNA-binding sequence preferences of DUX4.

Collaboration


Dive into the Hideki Aihara's collaboration.

Top Co-Authors

Avatar

Ke Shi

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John K. Lee

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yutaka Ito

Tokyo Metropolitan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge