Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideki Murakami is active.

Publication


Featured researches published by Hideki Murakami.


Oncogene | 2000

Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor.

Hironori Hayashi; Masatoshi Ichihara; Toshihide Iwashita; Hideki Murakami; Yohei Shimono; Kumi Kawai; Kei Kurokawa; Yoshiki Murakumo; Tsuneo Imai; Hiroomi Funahashi; Akimasa Nakao; Masahide Takahashi

Glial cell line derived neurotrophic factor (GDNF) signals through a multicomponent receptor complex consisting of RET receptor tyrosine kinase and a member of GDNF family receptor α (GFRα). Recently, it was shown that tyrosine 1062 in RET represents a binding site for SHC adaptor proteins and is crucial for both RAS/mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K)/AKT signaling pathways. In the present study, we characterized how these two pathways diverge from tyrosine 1062, using human neuroblastoma and primitive neuroectodermal tumor cell lines expressing RET at high levels. In response to GDNF stimulation, SHC bound to GAB1 and GRB2 adaptor proteins as well as RET, and SHC and GAB1 were highly phosphorylated on tyrosine. The complex formation consisting of SHC, GAB1 and GRB2 was almost abolished by replacement of tyrosine 1062 in RET with phenylalanine. Tyrosine-phosphorylated GAB1 was also associated with p85 subunit of PI3-K, resulting in PI3-K and AKT activation, whereas SHC-GRB2-SOS complex was responsible for the RAS/ERK signaling pathway. These results suggested that the RAS and PI3-K pathways activated by GDNF bifurcate mainly through SHC bound to tyrosine 1062 in RET. Furthermore, using luciferase reporter-gene assays, we found that the RAS/ERK and PI3-K signaling pathways are important for activation of CREB and NF-κB in GDNF-treated cells, respectively.


Journal of Thoracic Oncology | 2011

Epithelial to Mesenchymal Transition in an Epidermal Growth Factor Receptor-Mutant Lung Cancer Cell Line with Acquired Resistance to Erlotinib

Kenichi Suda; Kenji Tomizawa; Makiko Fujii; Hideki Murakami; Hirotaka Osada; Yoshihiko Maehara; Yasushi Yatabe; Yoshitaka Sekido; Tetsuya Mitsudomi

Introduction: Mesenchymal status is related to “inherent resistance” to gefitinib or erlotinib in non-small cell lung cancer without epidermal growth factor receptor(EGFR) mutations. In addition, a recent report showed that the epithelial to mesenchymal transition (EMT) plays a role in acquired resistance to gefitinib in A549 cells, which harbor a KRAS mutation. However, recent clinical studies revealed that gefitinib or erlotinib are highly effective in the treatment of non-small cell lung cancer with EGFR mutations. Methods: We developed resistant cells (HCC4006ER) from erlotinib-sensitive HCC4006 cells harboring an EGFR deletion mutation by chronic exposure to increasing concentrations of erlotinib. Acquired resistance mechanisms of HCC4006ER cells were analyzed. Results: Neither known resistance mechanisms nor novel molecules that may confer erlotinib resistance were identified using candidate or comprehensive analyses. In addition, HCC4006ER cells lost dependency for EGFR. However, we found that HCC4006ER cells acquired a mesenchymal phenotype and exhibited down-regulation of E-cadherin expression (2.7 × 10−3 times compared with parental cells). We also found that the histone deacetylase inhibitor, MS-275, restored E-cadherin expression and moderate sensitivity to erlotinib in HCC4006ER cells, on the other hand, transforming growth factor beta, an inducer of EMT, led to moderate erlotinib resistance in HCC4006 parental cells. Conclusions: This is the first report of a relationship between EMT and erlotinib acquired resistance in an erlotinib sensitive EGFR-mutant lung cancer cell line. Our results indicate that it would be important to consider the influence of EMT in the development of treatments against acquired resistance to gefitinib or erlotinib.


Cancer Research | 2011

LATS2 Is a Tumor Suppressor Gene of Malignant Mesothelioma

Hideki Murakami; Tetsuya Mizuno; Tetsuo Taniguchi; Makiko Fujii; Futoshi Ishiguro; Takayuki Fukui; Shinya Akatsuka; Yoshitsugu Horio; Toyoaki Hida; Yutaka Kondo; Shinya Toyokuni; Hirotaka Osada; Yoshitaka Sekido

Malignant mesothelioma (MM) is an aggressive neoplasm associated with asbestos exposure. We carried out genome-wide array-based comparative genomic hybridization analysis with 14 MM cell lines. Three cell lines showed overlapping homozygous deletion at chromosome 13q12, which harbored the LATS2 (large tumor suppressor homolog 2) gene. With 6 other MM cell lines and 25 MM tumors, we found 10 inactivating homozygous deletions or mutations of LATS2 among 45 MMs. LATS2 encodes a serine/threonine kinase, a component of the Hippo tumor-suppressive signaling pathway, and we transduced LATS2 in MM cells with its mutation. Transduction of LATS2 inactivated oncoprotein YAP, a transcriptional coactivator, via phosphorylation, and inhibited MM cell growth. We also analyzed LATS2 immunohistochemically and found that 13 of 45 MM tumors had low expression of LATS2. Because NF2 is genetically mutated in 40% to 50% of MM, our data indicate that Hippo pathway dysregulation is frequent in MM cells with inactivation of LATS2 or an upstream regulator of this pathway, Merlin, which is encoded by NF2. Thus, our results suggest that the inactivation of LATS2 is one of the key mechanisms for constitutive activation of YAP, which induces deregulation of MM cell proliferation.


Carcinogenesis | 2008

Variable DNA methylation patterns associated with progression of disease in hepatocellular carcinomas

Wentao Gao; Yutaka Kondo; Lanlan Shen; Yasuhiro Shimizu; Tsuyoshi Sano; Kenji Yamao; Atsushi Natsume; Yasuhiro Goto; Motokazu Ito; Hideki Murakami; Hirotaka Osada; Jiexin Zhang; Jean-Pierre Issa; Yoshitaka Sekido

Hepatocellular carcinoma (HCC) most commonly arises from chronic inflammation due to viral infection, as a result of genetic and epigenetic abnormalities. A global picture of epigenetic changes in HCC is lacking. We used methylated CpG island amplification microarrays (MCAMs) to study 6458 CpG islands in HCC and adjacent preneoplastic tissues [chronic hepatitis (CH) or liver cirrhosis (LC)] in comparison with normal liver tissues where neither viral infection nor hepatitis has existed. MCAM identified 719 (11%) prominent genes of hypermethylation in HCCs. HCCs arising from LC had significantly more methylation than those arising from CH (1249 genes or 19% versus 444 genes or 7%, P < 0.05). There were four patterns of aberrant methylation: Type I (4%, e.g. matrix metalloproteinase 14) shows a substantially high methylation level in adjacent tissue and does not increase further in cancer. Type II (55%, e.g. RASSF1A) shows progressively increasing methylation from adjacent tissue to HCC. Type III (4%, e.g. GNA14) shows decreased methylation in adjacent tissue but either similar or increased methylation in HCC. Type IV (37%, e.g. CDKN2A) shows low levels of methylation in normal tissue and adjacent tissue but high levels in HCC. These DNA methylation changes were confirmed by quantitative pyrosequencing methylation analysis in representative 24 genes and were analyzed for correlation with clinicopathological parameters in 38 patients. Intriguingly, methylation in the Type IV genes is characteristic of moderately/poorly differentiated cancer. Our global epigenome analysis reveals distinct patterns of methylation that are probably to represent different pathophysiologic processes in HCCs.


Oncogene | 2001

Identification of SNT/FRS2 docking site on RET receptor tyrosine kinase and its role for signal transduction.

Kei Kurokawa; Toshihide Iwashita; Hideki Murakami; Hironori Hayashi; Kumi Kawai; Masahide Takahashi

SNT/FRS2 is a lipid anchored docking protein that contains an amino-terminal myristylation signal, followed by a phosphotyrosine-binding (PTB) domain and a carboxy-terminal region with multiple tyrosine residues. Here we show that the SNT/FRS2 PTB domain binds to RET receptor tyrosine kinase activated by glial cell line-derived neurotrophic factor (GDNF) or multiple endocrine neoplasia (MEN) 2 mutations. Analyses by site directed-mutagenesis revealed that it binds to tyrosine 1062 in RET that is also known to be a binding site for the SHC adaptor protein. Whereas SHC bound to RET was associated with GRB2 and GAB1 proteins, SNT/FRS2 was associated with GRB2 only, suggesting that SNT/FRS2 is involved mainly in the activation of the RAS/mitogen activated protein kinase (MAPK) pathway but not the phosphatidylinositol 3-kinase (PI3-K)/AKT pathway. In addition, phosphorylated SNT/FRS2 appeared to directly complex with SHP-2 tyrosine phosphatase. These results suggest that tyrosine 1062 in RET provides a site for the interaction of multiple signaling molecules and that the balance of SHC and SNT/FRS2 binding may affect the nature of the intracellular signaling for cell proliferation, differentiation and survival induced by activated RET.


Journal of Experimental Medicine | 2012

TGF-β synergizes with defects in the Hippo pathway to stimulate human malignant mesothelioma growth

Makiko Fujii; Takeshi Toyoda; Hayao Nakanishi; Yasushi Yatabe; Ayuko Sato; Yasue Matsudaira; Hidemi Ito; Hideki Murakami; Yutaka Kondo; Eisaku Kondo; Toyoaki Hida; Tohru Tsujimura; Hirotaka Osada; Yoshitaka Sekido

Hippo and TGF-β converge on CTGF to promote malignant mesothelioma.


Cancer Research | 2009

Epigenetic Profiles Distinguish Malignant Pleural Mesothelioma from Lung Adenocarcinoma

Yasuhiro Goto; Keiko Shinjo; Yutaka Kondo; Lanlan Shen; Minoru Toyota; Hiromu Suzuki; Wentao Gao; Byonggu An; Makiko Fujii; Hideki Murakami; Hirotaka Osada; Tetsuo Taniguchi; Noriyasu Usami; Masashi Kondo; Yoshinori Hasegawa; Kaoru Shimokata; Keitaro Matsuo; Toyoaki Hida; Nobukazu Fujimoto; Takumi Kishimoto; Jean-Pierre Issa; Yoshitaka Sekido

Malignant pleural mesothelioma (MPM) is a fatal thoracic malignancy, the epigenetics of which are poorly defined. We performed high-throughput methylation analysis covering 6,157 CpG islands in 20 MPMs and 20 lung adenocarcinomas. Newly identified genes were further analyzed in 50 MPMs and 56 adenocarcinomas via quantitative methylation-specific PCR. Targets of histone H3 lysine 27 trimethylation (H3K27me3) and genetic alterations were also assessed in MPM cells by chromatin immunoprecipitation arrays and comparative genomic hybridization arrays. An average of 387 genes (6.3%) and 544 genes (8.8%) were hypermethylated in MPM and adenocarcinoma, respectively. Hierarchical cluster analysis showed that the two malignancies have characteristic DNA methylation patterns, likely a result of different pathologic processes. In MPM, a separate subset of genes was silenced by H3K27me3 and could be reactivated by treatment with a histone deacetylase inhibitor alone. Integrated analysis of these epigenetic and genetic alterations revealed that only 11% of heterozygously deleted genes were affected by DNA methylation and/or H3K27me3 in MPMs. Among the DNA hypermethylated genes, three (TMEM30B, KAZALD1, and MAPK13) were specifically methylated only in MPM and could serve as potential diagnostic markers. Interestingly, a subset of MPM cases (4 cases, 20%) had very low levels of DNA methylation and substantially longer survival, suggesting that the epigenetic alterations are one mechanism affecting progression of this disease. Our findings show a characteristic epigenetic profile of MPM and uncover multiple distinct epigenetic abnormalities that lead to the silencing of tumor suppressor genes in MPM and could serve as diagnostic or prognostic targets.


Carcinogenesis | 2008

YAP1 is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation

Toshihiko Yokoyama; Hirotaka Osada; Hideki Murakami; Yoshio Tatematsu; Tetsuo Taniguchi; Yutaka Kondo; Yasushi Yatabe; Yoshinori Hasegawa; Kaoru Shimokata; Yoshitsugu Horio; Toyoaki Hida; Yoshitaka Sekido

We previously reported the results of bacterial artificial chromosome array comprehensive genomic hybridization of malignant pleural mesotheliomas (MPMs), including two cases with high-level amplification in the 11q22 locus. In this study, we found that the YAP1 gene encoding a transcriptional coactivator was localized in this amplified region and overexpressed in both cases, suggesting it as a candidate oncogene in this region. We analyzed the involvement of YAP1 in MPM proliferation, as well as its functional and physical interaction with Merlin encoded by the neurofibromatosis type 2 (NF2) tumor suppressor gene, which is frequently mutated in MPMs. YAP1-RNA interference suppressed growth of a mesothelioma cell line NCI-H290 with NF2 homozygous deletion, probably through cell-cycle arrest and apoptosis induction, whereas YAP1 transfection promoted the growth of MeT-5A, an immortalized mesothelial cell line. We also found that the introduction of NF2 into NCI-H290 induced phosphorylation at serine 127 of YAP1, which was accompanied by reduction of nuclear localization of YAP1, whereas nuclear localization of a YAP1 S 127A mutant was not affected. Furthermore, results of immunoprecipitation and in vitro pull-down assays indicated a physical interaction between Merlin and YAP1. These results suggest that YAP1 is involved in mesothelial cell growth and that the transcriptional coactivator activity of YAP1 is functionally inhibited by Merlin through the induction of phosphorylation and cytoplasmic retention of YAP1. This is the first report of negative regulatory signaling from Merlin to YAP1 in mammalian cells. Future studies of transcriptional targets of YAP1 in MPMs may shed light on the molecular mechanisms of MPM development and lead to new therapeutic strategies.


Cancer Research | 2008

Roles of Achaete-Scute Homologue 1 in DKK1 and E-cadherin Repression and Neuroendocrine Differentiation in Lung Cancer

Hirotaka Osada; Shuta Tomida; Yasushi Yatabe; Yoshio Tatematsu; Toshiyuki Takeuchi; Hideki Murakami; Yutaka Kondo; Yoshitaka Sekido; Takashi Takahashi

The proneural basic-helix-loop-helix protein achaete-scute homologue 1 (ASH1) is expressed in a very limited spectrum of normal and cancerous cells in a lineage-specific manner, including normal pulmonary neuroendocrine cells and lung cancer cells with neuroendocrine features. Our previous results indicated that ASH1 may play a crucial role in the growth and survival of lung cancers with neuroendocrine features, which prompted us to investigate the molecular function of ASH1 in relation to its involvement in carcinogenic processes. Herein, we report for the first time that ASH1 functions as a dual transcription factor by activating neuroendocrine differentiation markers and also repressing putative tumor suppressors. This protein was found to inactivate DKK1 and DKK3, negative regulators of Wnt/beta-catenin signaling, E-cadherin, and integrin beta1 through ASH1-mediated deacetylation and repressive trimethylation of lysine 27 (H3K27me3) of histone H3 in the promoter regions of DKK1 and E-cadherin. In addition, ASH1-transduced A549 adenocarcinoma cells exhibited markedly altered morphology characteristics compared with lung cancer cells with neuroendocrine features both in vitro and in vivo and also grew faster in vivo. Our results provide important clues for a better understanding of the molecular and cellular biological roles of ASH1 in the process of carcinogenesis of lung cancers with neuroendocrine features and warrant future investigations to shed light on the lineage-specific dependency of this transcription factor with dual functions.


Carcinogenesis | 2009

Combined inhibition of MET and EGFR suppresses proliferation of malignant mesothelioma cells

Koji Kawaguchi; Hideki Murakami; Tetsuo Taniguchi; Makiko Fujii; Shigehisa Kawata; Takayuki Fukui; Yutaka Kondo; Hirotaka Osada; Noriyasu Usami; Kohei Yokoi; Yuichi Ueda; Yasushi Yatabe; Masafumi Ito; Yoshitsugu Horio; Toyoaki Hida; Yoshitaka Sekido

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm associated with asbestos exposure. Although expression and activation of receptor tyrosine kinases (RTKs), including MET, have been reported in most MPM, specific RTK inhibitors showed less than the expected response in MPM cells. To determine whether the lack of response of MET inhibitors was due to cooperation with other RTKs, we determined activation status of MET and other RTKs, including epidermal growth factor receptor (EGFR) family of 20 MPM cell lines, and tested whether dual RTK inhibition is an effective therapeutic strategy. We detected MET upregulation and phosphorylation (thus indicating activation) in 14 (70%) and 13 (65%) cell lines, but treatment with MET-specific inhibitors showed weak or modest effect of suppression in most of the cell lines. Phospho-RTK array analysis revealed that MET was simultaneously activated with other RTKs, including EGFR, ErbB2, ErbB3 and platelet-derived growth factor receptor-beta. Combination of MET and EGFR inhibitors triggered stronger inhibition on cell proliferation and invasion of MPM cells than that of each in vitro. These results indicated that coactivation of RTKs was essential in mesothelioma cell proliferation and/or survival, thus suggesting that simultaneous inhibition of RTKs may be a more effective strategy for the development of molecular target therapy for MPM.

Collaboration


Dive into the Hideki Murakami's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Makiko Fujii

Jichi Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byonggu An

Shiga University of Medical Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge