Hideki Mutai
University of Tokyo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hideki Mutai.
Orphanet Journal of Rare Diseases | 2013
Hideki Mutai; Naohiro Suzuki; Atsushi Shimizu; Chiharu Torii; Kazunori Namba; Noriko Morimoto; Jun Kudoh; Kimitaka Kaga; Kenjiro Kosaki; Tatsuo Matsunaga
BackgroundGenetic tests for hereditary hearing loss inform clinical management of patients and can provide the first step in the development of therapeutics. However, comprehensive genetic tests for deafness genes by Sanger sequencing is extremely expensive and time-consuming. Next-generation sequencing (NGS) technology is advantageous for genetic diagnosis of heterogeneous diseases that involve numerous causative genes.MethodsGenomic DNA samples from 58 subjects with hearing loss from 15 unrelated Japanese families were subjected to NGS to identify the genetic causes of hearing loss. Subjects did not have pathogenic GJB2 mutations (the gene most often associated with inherited hearing loss), mitochondrial m.1555A>G or 3243A>G mutations, enlarged vestibular aqueduct, or auditory neuropathy. Clinical features of subjects were obtained from medical records. Genomic DNA was subjected to a custom-designed SureSelect Target Enrichment System to capture coding exons and proximal flanking intronic sequences of 84 genes responsible for nonsyndromic or syndromic hearing loss, and DNA was sequenced by Illumina GAIIx (paired-end read). The sequences were mapped and quality-checked using the programs BWA, Novoalign, Picard, and GATK, and analyzed by Avadis NGS.ResultsCandidate genes were identified in 7 of the 15 families. These genes were ACTG1, DFNA5, POU4F3, SLC26A5, SIX1, MYO7A, CDH23, PCDH15, and USH2A, suggesting that a variety of genes underlie early-childhood hearing loss in Japanese patients. Mutations in Usher syndrome-related genes were detected in three families, including one double heterozygous mutation of CDH23 and PCDH15.ConclusionTargeted NGS analysis revealed a diverse spectrum of rare deafness genes in Japanese subjects and underscores implications for efficient genetic testing.
Clinical Genetics | 2012
Tatsuo Matsunaga; Hideki Mutai; Shinji Kunishima; Kazunori Namba; Noriko Morimoto; Yukiko Shinjo; Yukiko Arimoto; Y Kataoka; T Shintani; Noriko Morita; Tomoko Sugiuchi; Sawako Masuda; Atsuko Nakano; Hidenobu Taiji; Kimitaka Kaga
Matsunaga T, Mutai H, Kunishima S, Namba K, Morimoto N, Shinjo Y, Arimoto Y, Kataoka Y, Shintani T, Morita N, Sugiuchi T, Masuda S, Nakano A, Taiji H, Kaga K. A prevalent founder mutation and genotype–phenotype correlations of OTOF in Japanese patients with auditory neuropathy.
Orphanet Journal of Rare Diseases | 2015
Kunio Mizutari; Hideki Mutai; Kazunori Namba; Yuko Miyanaga; Atsuko Nakano; Yukiko Arimoto; Sawako Masuda; Noriko Morimoto; Hirokazu Sakamoto; Kimitaka Kaga; Tatsuo Matsunaga
BackgroundMutations in CDH23 are responsible for Usher syndrome 1D and recessive non-syndromic hearing loss. In this study, we revealed the prevalence of CDH23 mutations among patients with specific clinical characteristics.MethodsAfter excluding patients with GJB2 mutations and mitochondrial m.1555A > G and m.3243A > G mutations, subjects for CDH23 mutation analysis were selected according to the following criteria: 1) Sporadic or recessively inherited hearing loss 2) bilateral non-syndromic congenital hearing loss, 3) no cochlear malformation, 4) a poorer hearing level at high frequencies than at low frequencies, and 5) severe or profound hearing loss at higher frequencies.ResultsSeventy-two subjects were selected from 621 consecutive probands who did not have environmental causes for their hearing loss. After direct sequencing, 13 of the 72 probands (18.1%) had homozygous or compound heterozygous CDH23 mutations. In total, we identified 16 CDH23 mutations, including five novel mutations. The 16 mutations included 12 missense, two frameshift, and two splice-site mutations.ConclusionsThese results revealed that CDH23 mutations are highly prevalent in patients with congenital high-frequency sporadic or recessively inherited hearing loss and that the mutation spectrum was diverse, indicating that patients with these clinical features merit genetic analysis.
Gene | 2013
Shujiro Minami; Hideki Mutai; Atsuko Nakano; Yukiko Arimoto; Hidenobu Taiji; Noriko Morimoto; Hideaki Sakata; Nodoka Adachi; Sawako Masuda; Hirokazu Sakamoto; Haruo Yoshida; Fujinobu Tanaka; Noriko Morita; Tomoko Sugiuchi; Kimitaka Kaga; Tatsuo Matsunaga
The hearing loss caused by GJB2 mutations is usually congenital in onset, moderate to profound in degree, and non-progressive. The objective of this study was to study genotype/phenotype correlations and to document 14 children with biallelic GJB2 mutations who passed newborn hearing screening (NHS). Genetic testing for GJB2 mutations by direct sequencing was performed on 924 individuals (810 families) with hearing loss, and 204 patients (175 families) were found to carry biallelic GJB2 mutations. NHS results were obtained through medical records. A total of 18 pathological mutations were identified, which were subclassified as eight inactivating and 10 non-inactivating mutations. p.I128M and p.H73Y were identified as novel missense GJB2 mutations. Of the 14 children with biallelic GJB2 mutations who passed NHS, eight were compound heterozygotes and 3 were homozygous for the c.235delC mutation in GJB2, and the other three combinations of non-c.235delC mutations identified were p.Y136X-p.G45E/p.V37I heterozygous, c.512ins4/p.R143W heterozygous, and p.V37I/p.R143W heterozygous. These 14 cases demonstrate that the current NHS does not identify all infants with biallelic GJB2 mutations. They suggest that the frequency of non-penetrance at birth is approximately 6.9% or higher in DFNB1 patients and provide further evidence that GJB2 hearing loss may not always be congenital in onset.
Biochemical and Biophysical Research Communications | 2014
Sawako Masuda; Kazunori Namba; Hideki Mutai; Satoko Usui; Yuko Miyanaga; Hiroki Kaneko; Tatsuo Matsunaga
The access of bone morphogenetic protein (BMP) to the BMP receptors on the cell surface is regulated by its antagonist noggin, which binds to heparan-sulfate proteoglycans on the cell surface. Noggin is encoded by NOG and mutations in the gene are associated with aberrant skeletal formation, such as in the autosomal dominant disorders proximal symphalangism (SYM1), multiple synostoses syndrome, Teunissen-Cremers syndrome, and tarsal-carpal coalition syndrome. NOG mutations affecting a specific function may produce a distinct phenotype. In this study, we investigated a Japanese pedigree with SYM1 and conductive hearing loss and found that it carried a novel heterozygous missense mutation of NOG (c.406C>T; p.R136C) affecting the heparin-binding site of noggin. As no mutations of the heparin-binding site of noggin have previously been reported, we investigated the crystal structure of wild-type noggin to investigate molecular mechanism of the p.R136C mutation. We found that the positively charged arginine at position 136 was predicted to be important for binding to the negatively charged heparan-sulfate proteoglycan (HSPG). An in silico docking analysis showed that one of the salt bridges between noggin and heparin disappeared following the replacement of the arginine with a non-charged cysteine. We propose that the decreased binding affinity of NOG with the p.R136C mutation to HSPG leads to an excess of BMP signaling and underlies the SYM1 and conductive hearing loss phenotype of carriers.
Laryngoscope | 2014
Yasuhide Okamoto; Hideki Mutai; Atsuko Nakano; Yukiko Arimoto; Tomoko Sugiuchi; Sawako Masuda; Noriko Morimoto; Hirokazu Sakamoto; Noboru Ogahara; Akira Takagi; Hidenobu Taiji; Kimitaka Kaga; Kaoru Ogawa; Tatsuo Matsunaga
To investigate possible association of hearing loss and SLC26A4 mutations with the subgroups of enlarged vestibular aqueduct (EVA) morphology in Japanese subjects with hearing loss.
Gene | 2012
Shujiro Minami; Sawako Masuda; Satoko Usui; Hideki Mutai; Tatsuo Matsunaga
It is rarely reported that two distinct genetic mutations affecting hearing have been found in one family. We report on a family exhibiting comorbid mutation of GJB2 and WFS1. A four-generation Japanese family with autosomal dominant sensorineural hearing loss was studied. In 7 of the 24 family members, audiometric evaluations and genetic analysis were performed. We detected A-to-C nucleotide transversion (c.2576G>C) in exon 8 of WFS1 that was predicted to result in an arginine-to-proline substitution at codon 859 (R859P), G-to-A transition (c.109G>A) in exon 2 of GJB2 that was predicted to result in a valine-to-isoleucine substitution at codon 37 (V37I), and C-to-T transition (c.427C>T) in exon 2 of GJB2 that was predicted to result in an arginine-to-tryptophan substitution at codon 143 (R143W). Two individuals who had heterozygosity of GJB2 mutations and heterozygosity of WFS1 mutations showed low-frequency hearing loss. One individual who had homozygosity of GJB2 mutation without WFS1 mutation had moderate, gradual high tone hearing loss. On the other hand, a moderate flat loss configuration was seen in one individual who had compound heterozygosity of GJB2 and heterozygosity of WFS1 mutations. Our results indicate that the individual who has both GJB2 and WFS1 mutations can show GJB2 phenotype.
Acta Oto-laryngologica | 2013
Tatsuo Matsunaga; Hideki Mutai; Kazunori Namba; Noriko Morita; Sawako Masuda
Abstract Conclusion: PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Objectives: Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. Methods: In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. Results: In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759–2554 kb that eliminated 12–18 genes including a whole PAX3 gene.
PLOS ONE | 2015
Hideki Mutai; Fuyuki Miya; Masato Fujii; Tatsuhiko Tsunoda; Tatsuo Matsunaga
Various factors that are important for proper hearing have been identified, including serum levels of zinc. Here we investigated whether epigenetic regulatory pathways, which can be modified by environmental factors, could modulate hearing. RT-PCR detected expression of genes encoding DNA methyltransferase and histone deacetylase (Hdac) in the postnatal as well as adult mouse auditory epithelium. DBA/2J mice, which are a model for progressive hearing loss, were injected subcutaneously with one or a combination of the following reagents: L-methionine as a methyl donor, valproic acid as a pan-Hdac inhibitor, and folic acid and vitamin B12 as putative factors involved in age-related hearing loss. The mice were treated from ages 4 to 12 weeks (N ≥ 5), and auditory brainstem response (ABR) thresholds were measured at 8, 16, and 32 kHz. Treatment of the mice with a combination of L-methionine and valproic acid (M+V) significantly reduced the increase in the ABR threshold at 32 kHz. Treatment with any of these reagents individually produced no such effect. Microarray analyses detected 299 gene probes that were significantly up- or down-regulated in the cochleae of mice treated with M+V compared with the control vehicle-treated mice. Quantitative RT-PCR confirmed significant up-regulation of a zinc importer gene, Zip4, in the cochleae of mice treated with M+V. Immunohistochemistry demonstrated an intense Zip4 signal in cochlear tissues such as the lateral wall, organ of Corti, and spiral ganglion. Finally, mice treated with the Zip4 inducer (–)-epigallocatechin-3-O-gallate showed a significant reduction in the increase of the ABR threshold at 32 kHz and up-regulation of Zip4 expression in the cochlea. This study suggests that epigenetic regulatory pathways can modify auditory function and that zinc intake in the cochlea via Zip4 mediates maintenance of mammalian hearing.
Otology & Neurotology | 2016
Kazunori Namba; Hideki Mutai; Yoichiro Takiguchi; Hirotaka Yagi; Takahide Okuyama; Shuntaro Oba; Ryosuke Yamagishi; Hiroki Kaneko; Tomoko Shintani; Kimitaka Kaga; Tatsuo Matsunaga
Hypothesis: Different missense mutations of the optic atrophy 1 gene (OPA1) identified in optic atrophy patients with auditory neuropathy spectrum disorder (ANSD) induce functional impairment through different molecular mechanisms. Background: OPA1 is the gene responsible for autosomal dominant optic atrophy (ADOA), but some of its mutations are also associated with ANSD. OPA1 is a member of the GTPase family of proteins and plays a key role in the maintenance of mitochondrial activities that are dependent on dimer formation of the protein. There are many reports of OPA1 mutations, but the molecular mechanisms of their functional impairments are unclear. Methods: The sequences of coding regions in OPA1 were analyzed from blood samples of ADOA patients with ANSD. Molecular modeling of the proteins ability to form dimers and its GTP-binding ability were conducted to study the effects of structural changes in OPA1 caused by two identified mutations and their resultant effects on protein function. Results: Two heterozygous mutations, p.T414P (c.1240A>C) and p.T540P (c.1618A>C), located in the GTPase and middle domains of OPA1, respectively, were identified in two patients. Molecular modeling indicated decreased dimer formation caused by destabilization of the association structure of the p.T414P mutant, and decreased GTP-binding caused by destabilization of the binding site structure in the p.T540P mutant. Conclusion: These two different conformational changes might result in decreased GTPase activities that trigger ADOA associated with ANSD, and are likely to be associated with mild clinical features. Molecular modeling would provide useful information in clinical practice.