Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideki Okazawa is active.

Publication


Featured researches published by Hideki Okazawa.


Journal of Immunology | 2005

Negative Regulation of Phagocytosis in Macrophages by the CD47-SHPS-1 System

Hideki Okazawa; Sei-ichiro Motegi; Naoko Ohyama; Hiroshi Ohnishi; Takeshi Tomizawa; Yoriaki Kaneko; Per-Arne Oldenborg; Osamu Ishikawa; Takashi Matozaki

Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) is a transmembrane protein that is expressed predominantly in macrophages. Its extracellular region interacts with the transmembrane ligand CD47 expressed on the surface of adjacent cells, and its cytoplasmic region binds the protein tyrosine phosphatases SHP-1 and SHP-2. Phagocytosis of IgG- or complement-opsonized RBCs by peritoneal macrophages derived from mice that express a mutant SHPS-1 protein that lacks most of the cytoplasmic region was markedly enhanced compared with that apparent with wild-type macrophages. This effect was not observed either with CD47-deficient RBCs as the phagocytic target or in the presence of blocking Abs to SHPS-1. Depletion of SHPS-1 from wild-type macrophages by RNA interference also promoted FcγR-mediated phagocytosis of wild-type RBCs. Ligation of SHPS-1 on macrophages by CD47 on RBCs promoted tyrosine phosphorylation of SHPS-1 and its association with SHP-1, whereas tyrosine phosphorylation of SHPS-1 was markedly reduced in response to cross-linking of FcγRs. Treatment with inhibitors of PI3K or of Syk, but not with those of MEK or Src family kinases, abolished the enhancement of FcγR-mediated phagocytosis apparent in macrophages from SHPS-1 mutant mice. In contrast, FcγR-mediated tyrosine phosphorylation of Syk, Cbl, or the γ subunit of FcR was similar in macrophages from wild-type and SHPS-1 mutant mice. These results suggest that ligation of SHPS-1 on macrophages by CD47 promotes the tyrosine phosphorylation of SHPS-1 and thereby prevents the FcγR-mediated disruption of the SHPS-1-SHP-1 complex, resulting in inhibition of phagocytosis. The inhibition of phagocytosis by the SHPS-1-SHP-1 complex may be mediated at the level of Syk or PI3K signaling.


Journal of Biological Chemistry | 2002

Negative regulation of platelet clearance and of the macrophage phagocytic response by the transmembrane glycoprotein SHPS-1.

Takuji Yamao; Tetsuya Noguchi; Osamu Takeuchi; Uichi Nishiyama; Haruhiko Morita; Tetsuya Hagiwara; Hironori Akahori; Takashi Kato; Kenjiro Inagaki; Hideki Okazawa; Yoshitake Hayashi; Takashi Matozaki; Kiyoshi Takeda; Shizuo Akira; Masato Kasuga

SHPS-1 is a receptor-type glycoprotein that binds and activates the protein-tyrosine phosphatases SHP-1 and SHP-2, and thereby negatively modulates intracellular signaling initiated by various cell surface receptors coupled to tyrosine kinases. SHPS-1 also regulates intercellular communication in the neural and immune systems through its association with CD47 (integrin-associated protein) on adjacent cells. Furthermore, recent studies with fibroblasts derived from mice expressing an SHPS-1 mutant that lacks most of the cytoplasmic region suggested that the intact protein contributes to cytoskeletal function. Mice homozygous for this SHPS-1 mutation have now been shown to manifest thrombocytopenia. These animals did not exhibit a defect in megakaryocytopoiesis or in platelet production. However, platelets were cleared from the bloodstream more rapidly in the mutant mice than in wild-type animals. Furthermore, peritoneal macrophages from the mutant mice phagocytosed red blood cells more effectively than did those from wild-type mice; in addition, they exhibited an increase both in the rate of cell spreading and in the formation of filopodia-like structures at the cell periphery. These results indicate that SHPS-1 both contributes to the survival of circulating platelets and down-regulates the macrophage phagocytic response.


The EMBO Journal | 2003

Role of the CD47-SHPS-1 system in regulation of cell migration.

Sei-ichiro Motegi; Hideki Okazawa; Hiroshi Ohnishi; Ryuji Sato; Yoriaki Kaneko; Hisae Kobayashi; Kyoko Tomizawa; Tomokazu Ito; Nakayuki Honma; Hans-Jörg Bühring; Osamu Ishikawa; Takashi Matozaki

SHPS‐1 is a transmembrane protein whose extracellular region interacts with CD47 and whose cytoplasmic region undergoes tyrosine phosphorylation and there by binds the protein tyrosine phosphatase SHP‐2. Formation of this complex is implicated in regulation of cell migration by an unknown mechanism. A CD47‐Fc fusion protein or antibodies to SHPS‐1 inhibited migration of human melanoma cells or of CHO cells overexpressing SHPS‐1. Overexpression of wild‐type SHPS‐1 promoted CHO cell migration, whereas expression of the SHPS‐1‐4F mutant, which lacks the phosphorylation sites required for SHP‐2 binding, had no effect. Antibodies to SHPS‐1 failed to inhibit migration of CHO cells expressing SHPS‐1‐4F. SHPS‐1 ligands induced the dephosphorylation of SHPS‐1 and dissociation of SHP‐2. Antibodies to SHPS‐1 also enhanced Rho activity and induced both formation of stress fibers and adoption of a less polarized morphology in melanoma cells. Our results suggest that engagement of SHPS‐1 by CD47 prevents the positive regulation of cell migration by this protein. The CD47–SHPS‐1 system and SHP‐2 might thus contribute to the inhibition of cell migration by cell–cell contact.


Journal of Immunology | 2004

Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate 1 Regulates the Migration of Langerhans Cells from the Epidermis to Draining Lymph Nodes

Atsushi Fukunaga; Hiroshi Nagai; Tetsuya Noguchi; Hideki Okazawa; Takashi Matozaki; Xijun Yu; Carl F. Lagenaur; Nakayuki Honma; Masamitsu Ichihashi; Masato Kasuga; Chikako Nishigori; Tatsuya Horikawa

Src homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1) is a member of the signal regulatory protein family in which the extracellular region interacts with its ligand, CD47. Recent studies have demonstrated that SHPS-1 plays an important role in cell migration and cell adhesion. We demonstrate in this study, using immunohistochemical and flow cytometric analyses, that murine Langerhans cells (LCs) express SHPS-1. Treatment of mice ears with 2,4-dinitro-1-fluorobenzene significantly reduced the number of epidermal LCs, and that reduction could be reversed by pretreatment with mAb to SHPS-1 or the CD47-Fc fusion protein. Treatment with the SHPS-1 mAb in vivo reduced the number of FITC-bearing cells in the lesional lymph nodes after the application of FITC to the skin. The SHPS-1 mAb inhibited the in vivo TNF-α-induced migration of LCs. The emigration of dendritic cells expressing I-Ab+ from skin explants to the medium was also reduced by the SHPS-1 mAb. We further demonstrate that the chemotaxis of a murine dendritic cell line, XS52, by macrophage inflammatory protein-3β was significantly inhibited by treatment with the SHPS-1 mAb or CD47-Fc recombinant protein. Finally, we show that migration of LCs was attenuated in mutant mice that lack the intracellular domain of SHPS-1. These observations show that the ligation of SHPS-1 with the SHPS-1 mAb or with CD47-Fc abrogates the migration of LCs in vivo and in vitro, which suggests that the SHPS-1-CD47 interaction may negatively regulate LC migration.


The Journal of Neuroscience | 2005

Differential Localization of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 and CD47 and Its Molecular Mechanisms in Cultured Hippocampal Neurons

Hiroshi Ohnishi; Yuka Kaneko; Hideki Okazawa; Motoaki Miyashita; Ryuji Sato; Akiko Hayashi; Kazutoshi Tada; Shigekazu Nagata; Masami Takahashi; Takashi Matozaki

Polarized localization of membrane proteins to axons or dendrites is important for a variety of neuronal functions, including neurite outgrowth and synaptogenesis during neural development. Src homology 2 domain-containing protein tyrosine phosphatase (SHP) substrate-1 (SHPS-1) and its ligand cluster of differentiation 47 (CD47), both of which are members of the Ig superfamily of proteins, are thought to constitute an intercellular communication system in the CNS, although the physiological functions of this CD47-SHPS-1 system remain unknown. To provide insight into these functions, we have now examined the localization of SHPS-1 and CD47 in cultured hippocampal neurons. Endogenous SHPS-1 was detected at the surface of both axons and dendrites, whereas endogenous CD47 was localized predominantly to the surface of dendrites. Forced expression of these two proteins confirmed their distinct localizations. The extracellular regions of SHPS-1 and CD47 were responsible, at least in part, for their axonal and dendritic localizations, respectively; however, the axonal localization of SHPS-1 was not mediated by any one of the three Ig domains in its extracellular region. Overexpression of SHPS-1 and CD47 in distinct neurons resulted in marked accumulation of these proteins at sites of contact between SHPS-1-expressing axons and CD47-expressing dendrites. Such contact sites exhibited an enlarged structure but did not contain the synaptic marker protein vesicle-associated membrane protein-2. These results suggest that differential localization of SHPS-1 and CD47 at axons and dendrites generates a directional intercellular communication system that potentially contributes to regulation of synaptogenesis and the formation of neural networks.


The Journal of Neuroscience | 2010

Stress-evoked tyrosine phosphorylation of signal regulatory protein α regulates behavioral immobility in the forced swim test.

Hiroshi Ohnishi; Takaaki Murata; Shinya Kusakari; Yuriko Hayashi; Keizo Takao; Toshi Maruyama; Yukio Ago; Ken Koda; Feng-Jie Jin; Katsuya Okawa; Per-Arne Oldenborg; Hideki Okazawa; Yoji Murata; Nobuhiko Furuya; Toshio Matsuda; Tsuyoshi Miyakawa; Takashi Matozaki

Severe stress induces changes in neuronal function that are implicated in stress-related disorders such as depression. The molecular mechanisms underlying the response of the brain to stress remain primarily unknown, however. Signal regulatory protein α (SIRPα) is an Ig-superfamily protein that undergoes tyrosine phosphorylation and binds the protein tyrosine phosphatase Shp2. Here we show that mice expressing a form of SIRPα that lacks most of the cytoplasmic region manifest prolonged immobility (depression-like behavior) in the forced swim (FS) test. FS stress induced marked tyrosine phosphorylation of SIRPα in the brain of wild-type mice through activation of Src family kinases. The SIRPα ligand CD47 was important for such SIRPα phosphorylation, and CD47-deficient mice also manifested prolonged immobility in the FS test. Moreover, FS stress-induced tyrosine phosphorylation of both the NR2B subunit of the NMDA subtype of glutamate receptor and the K+-channel subunit Kvβ2 was regulated by SIRPα. Thus, tyrosine phosphorylation of SIRPα is important for regulation of depression-like behavior in the response of the brain to stress.


Journal of Biological Chemistry | 2004

Ectodomain Shedding of SHPS-1 and Its Role in Regulation of Cell Migration

Hiroshi Ohnishi; Hisae Kobayashi; Hideki Okazawa; Yoshihide Ohe; Kyoko Tomizawa; Ryuji Sato; Takashi Matozaki

SHPS-1 is a transmembrane protein whose cytoplasmic region undergoes tyrosine phosphorylation and then binds the protein-tyrosine phosphatase SHP-2. Formation of the SHPS-1-SHP-2 complex is implicated in regulation of cell migration. In addition, SHPS-1 and its ligand CD47 constitute an intercellular recognition system that contributes to inhibition of cell migration by cell-cell contact. The ectodomain of SHPS-1 has now been shown to be shed from cells in a reaction likely mediated by a metalloproteinase. This process was promoted by activation of protein kinase C or of Ras, and the released ectodomain exhibited minimal CD47-binding activity. Metalloproteinases catalyzed the cleavage of a recombinant SHPS-1-Fc fusion protein in vitro, and the primary cleavage site was localized to the juxtamembrane region of SHPS-1. Forced expression of an SHPS-1 mutant resistant to ectodomain shedding impaired cell migration, cell spreading, and reorganization of the actin cytoskeleton. It also increased the tyrosine phosphorylation of paxillin and FAK triggered by cell adhesion. These results suggest that shedding of the ectodomain of SHPS-1 plays an important role in regulation of cell migration and spreading by this protein.


Biochemical and Biophysical Research Communications | 2003

Characterization of nucleotide pyrophosphatase-5 as an oligomannosidic glycoprotein in rat brain.

Yoshihide Ohe; Hiroshi Ohnishi; Hideki Okazawa; Kyoko Tomizawa; Hisae Kobayashi; Katsuya Okawa; Takashi Matozaki

Membrane glycoproteins of neural cells play crucial roles in axon guidance, synaptogenesis, and neuronal transmission. We have here characterized membrane glycoproteins containing terminal alpha-mannose residues in rat brain membranes. Affinity purification using Galanthus nivalis agglutinin, that is highly specific for terminal alpha-mannose residues, revealed a 50-kDa protein as well as 80-kDa SHPS-1 and 45-kDa beta2 subunit of Na,K-ATPase in rat brain membranes. Combination of N-terminal peptide sequencing and mass spectrometry indicated that the 50-kDa protein was rat nucleotide pyrophosphatase-5 (NPP-5). In contrast to other NPPs, NPP-5 was a type-I transmembrane protein. Northern blot analysis showed that NPP-5 was highly expressed in brain, but also expressed in other peripheral tissues. However, we could not detect either the NPP activity or the lysophospholipase D activity in the immunoprecipitates with antibodies to NPP-5 from rat brain membranes. These data, therefore, suggest that NPP-5 is a neural oligomannosidic glycoprotein that may participate in neural cell communications.


Endocrinology | 2008

Expression of Src Homology 2 Domain-Containing Protein Tyrosine Phosphatase Substrate-1 in Pancreatic β-Cells and Its Role in Promotion of Insulin Secretion and Protection against Diabetes

Masaki Kobayashi; Hiroshi Ohnishi; Hideki Okazawa; Yoji Murata; Yuriko Hayashi; Hisae Kobayashi; Tadahiro Kitamura; Takashi Matozaki

Insulin secretion by beta-cells of pancreatic islets is regulated by various soluble factors including glucose and hormones. The importance of direct cell-cell communication among beta-cells or between beta-cells and other cell types for such regulation has remained unclear, however. Transmembrane proteins Src homology 2 domain-containing protein tyrosine phosphatase substrate-1 (SHPS-1) and its ligand CD47 interact through their extracellular regions and contribute to intercellular communication. We now show that both SHPS-1 and CD47 are prominently expressed in beta-cells of the pancreas. The plasma insulin level in the randomly fed state was markedly reduced in mice that express a mutant form of SHPS-1 lacking most of the cytoplasmic region compared with that in wild-type (WT) mice, although the blood glucose concentrations of the two types of mice were similar. This reduction in the plasma insulin level of SHPS-1 mutant mice was even more pronounced in animals maintained on a high-fat diet. Glucose tolerance was also markedly impaired in SHPS-1 mutant mice on a high-fat diet, whereas both peripheral insulin sensitivity and the insulin content of the pancreas in the mutant animals were similar to those of WT mice. Glucose-stimulated insulin secretion was similar for islets isolated from WT or SHPS-1 mutant mice. The impaired glucose tolerance of SHPS-1 mutant mice was ameliorated by treatment with the alpha2-adrenergic antagonist yohimbine. These results suggest that SHPS-1 promotes insulin secretion from beta-cells and thereby protects against diabetes. Preventing of alpha2-adrenergic receptor-mediated inhibition of insulin secretion may partly participate in such a function of SHPS-1.


Blood | 2006

SHPS-1 promotes the survival of circulating erythrocytes through inhibition of phagocytosis by splenic macrophages

Tomomi Ishikawa-Sekigami; Yoriaki Kaneko; Hideki Okazawa; Takeshi Tomizawa; Jun Okajo; Yasuyuki Saito; Chie Okuzawa; Minako Sugawara-Yokoo; Uichi Nishiyama; Hiroshi Ohnishi; Takashi Matozaki; Yoshihisa Nojima

Collaboration


Dive into the Hideki Okazawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akiko Hayashi

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge