Hideki Sanjo
Osaka University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hideki Sanjo.
Immunity | 1999
Osamu Takeuchi; Katsuaki Hoshino; Taro Kawai; Hideki Sanjo; Haruhiko Takada; Tomohiko Ogawa; Kiyoshi Takeda; Shizuo Akira
Toll-like receptor (TLR) 2 and TLR4 are implicated in the recognition of various bacterial cell wall components, such as lipopolysaccharide (LPS). To investigate in vivo roles of TLR2, we generated TLR2-deficient mice. In contrast to LPS unresponsiveness in TLR4-deficient mice, TLR2-deficient mice responded to LPS to the same extent as wild-type mice. TLR2-deficient macrophages were hyporesponsive to several Gram-positive bacterial cell walls as well as Staphylococcus aureus peptidoglycan. TLR4-deficient macrophages lacked the response to Gram-positive lipoteichoic acids. These results demonstrate that TLR2 and TLR4 recognize different bacterial cell wall components in vivo and TLR2 plays a major role in Gram-positive bacterial recognition.
Nature Immunology | 2002
Hiroaki Hemmi; Tsuneyasu Kaisho; Osamu Takeuchi; Shintaro Sato; Hideki Sanjo; Katsuaki Hoshino; Takao Horiuchi; Hideyuki Tomizawa; Kiyoshi Takeda; Shizuo Akira
The imidazoquinoline compounds imiquimod and R-848 are low-molecular-weight immune response modifiers that can induce the synthesis of interferon-α and other cytokines in a variety of cell types. These compounds have potent anti-viral and anti-tumor properties; however, the mechanisms by which they exert their anti-viral activities remain unclear. Here we show that the imidazoquinolines activate immune cells via the Toll-like receptor 7 (TLR7)-MyD88–dependent signaling pathway. In response to the imidazoquinolines, neither MyD88- nor TLR7-deficient mice showed any inflammatory cytokine production by macrophages, proliferation of splenocytes or maturation of dendritic cells. Imidazoquinoline-induced signaling events were also abolished in both MyD88- and TLR7-deficient mice.
Nature | 2002
Masahiro Yamamoto; Shintaro Sato; Hiroaki Hemmi; Hideki Sanjo; Satoshi Uematsu; Tsuneyasu Kaisho; Katsuaki Hoshino; Osamu Takeuchi; Masaya Kobayashi; Takashi Fujita; Kiyoshi Takeda; Shizuo Akira
Signal transduction through Toll-like receptors (TLRs) originates from their intracellular Toll/interleukin-1 receptor (TIR) domain, which binds to MyD88, a common adaptor protein containing a TIR domain. Although cytokine production is completely abolished in MyD88-deficient mice, some responses to lipopolysaccharide (LPS), including the induction of interferon-inducible genes and the maturation of dendritic cells, are still observed. Another adaptor, TIRAP (also known as Mal), has been cloned as a molecule that specifically associates with TLR4 and thus may be responsible for the MyD88-independent response. Here we report that LPS-induced splenocyte proliferation and cytokine production are abolished in mice lacking TIRAP. As in MyD88-deficient mice, LPS activation of the nuclear factor NF-κB and mitogen-activated protein kinases is induced with delayed kinetics in TIRAP-deficient mice. Expression of interferon-inducible genes and the maturation of dendritic cells is observed in these mice; they also show defective response to TLR2 ligands, but not to stimuli that activate TLR3, TLR7 or TLR9. In contrast to previous suggestions, our results show that TIRAP is not specific to TLR4 signalling and does not participate in the MyD88-independent pathway. Instead, TIRAP has a crucial role in the MyD88-dependent signalling pathway shared by TLR2 and TLR4.
Nature Immunology | 2005
Shintaro Sato; Hideki Sanjo; Kiyoshi Takeda; Jun Ninomiya-Tsuji; Masahiro Yamamoto; Taro Kawai; Kunihiro Matsumoto; Osamu Takeuchi; Shizuo Akira
Transforming growth factor-β–activated kinase 1 (TAK1) has been linked to interleukin 1 receptor and tumor necrosis factor receptor signaling. Here we generated mouse strains with conditional expression of a Map3k7 allele encoding part of TAK1. TAK1-deficient embryonic fibroblasts demonstrated loss of responses to interleukin 1β and tumor necrosis factor. Studies of mice with B cell–specific TAK1 deficiency showed that TAK1 was indispensable for cellular responses to Toll-like receptor ligands, CD40 and B cell receptor crosslinking. In addition, antigen-induced immune responses were considerably impaired in mice with B cell–specific TAK1 deficiency. TAK1-deficient cells failed to activate transcription factor NF-κB and mitogen-activated protein kinases in response to interleukin 1β, tumor necrosis factor and Toll-like receptor ligands. However, TAK1-deficient B cells were able to activate NF-κB but not the kinase Jnk in response to B cell receptor stimulation. These results collectively indicate that TAK1 is key in the cellular response to a variety of stimuli.
Journal of Experimental Medicine | 2004
Hiroaki Hemmi; Osamu Takeuchi; Shintaro Sato; Masahiro Yamamoto; Tsuneyasu Kaisho; Hideki Sanjo; Taro Kawai; Katsuaki Hoshino; Kiyoshi Takeda; Shizuo Akira
Viral infection and stimulation with lipopolysaccharide (LPS) or double stranded RNA (dsRNA) induce phosphorylation of interferon (IFN) regulatory factor (IRF)-3 and its translocation to the nucleus, thereby leading to the IFN-β gene induction. Recently, two IκB kinase (IKK)–related kinases, inducible IκB kinase (IKK-i) and TANK-binding kinase 1 (TBK1), were suggested to act as IRF-3 kinases and be involved in IFN-β production in Toll-like receptor (TLR) signaling and viral infection. In this work, we investigated the physiological roles of these kinases by gene targeting. TBK1-deficient embryonic fibroblasts (EFs) showed dramatic decrease in induction of IFN-β and IFN-inducible genes in response to LPS or dsRNA as well as after viral infection. However, dsRNA-induced expression of these genes was residually detected in TBK1-deficient cells and intact in IKK-i–deficient cells, but completely abolished in IKK-i/TBK1 doubly deficient cells. IRF-3 activation, in response not only to dsRNA but also to viral infection, was impaired in TBK1-deficient cells. Together, these results demonstrate that TBK1 as well as, albeit to a lesser extent, IKK-i play a crucial role in the induction of IFN-β and IFN-inducible genes in both TLR-stimulated and virus-infected EFs.
Gene | 1999
O. Takeuchi; Taro Kawai; Hideki Sanjo; Neal G. Copeland; Debra J. Gilbert; Nancy A. Jenkins; Kiyoshi Takeda; Shizuo Akira
Drosophila Toll protein is shown to activate the innate immune system in adult and regulate the dorsoventral patterning in the developing embryo. Recently, five human homologs of Drosophila Toll, designated as Toll-like receptors (TLRs), have been identified and shown to play a role in the innate immune response. We report here the molecular cloning and characterization of a new member of Toll-like receptor family, Toll-like receptor 6 (TLR6). Human and murine TLR6 are type-I transmembrane receptors that contain both an extracellular leucine-rich repeat (LRR) domain and a cytoplasmic Toll/IL-1 receptor (IL-1R)-like region. The amino acid sequence of human TLR6 (hTLR6) is most similar to that of hTLR1 with 69% identity. RT-PCR analysis revealed that murine TLR6 is expressed predominantly in spleen, thymus, ovary and lung. Like other TLR family members, constitutively active TLR6 activates both NF-kappaB and c-Jun N-terminal kinase (JNK). The TLR6 gene, as well as the TLR1 gene, mapped to the proximal region of murine chromosome 5 within 1.7cM of each other. These results suggest that TLR6 is a novel member of an expanding TLR family.
Cell | 2006
Ping Zhu; Sung Hee Baek; Eliot Michael Bourk; Kenneth A. Ohgi; Ivan Garcia-Bassets; Hideki Sanjo; Shizuo Akira; Paul F. Kotol; Christopher K. Glass; Michael G. Rosenfeld; David W. Rose
Defining the precise molecular strategies that coordinate patterns of transcriptional responses to specific signals is central for understanding normal development and homeostasis as well as the pathogenesis of hormone-dependent cancers. Here we report specific prostate cancer cell/macrophage interactions that mediate a switch in function of selective androgen receptor antagonists/modulators (SARMs) from repression to activation in vivo. This is based on an evolutionarily conserved receptor N-terminal L/HX7LL motif, selectively present in sex steroid receptors, that causes recruitment of TAB2 as a component of an N-CoR corepressor complex. TAB2 acts as a sensor for inflammatory signals by serving as a molecular beacon for recruitment of MEKK1, which in turn mediates dismissal of the N-CoR/HDAC complex and permits derepression of androgen and estrogen receptor target genes. Surprisingly, this conserved sensor strategy may have arisen to mediate reversal of sex steroid-dependent repression of a limited cohort of target genes in response to inflammatory signals, linking inflammatory and nuclear receptor ligand responses to essential reproductive functions.
Molecular and Cellular Biology | 1998
Taro Kawai; Makoto Matsumoto; Kiyoshi Takeda; Hideki Sanjo; Shizuo Akira
ABSTRACT We have identified a novel serine/threonine kinase, designated ZIP kinase, which mediates apoptosis. ZIP kinase contains a leucine zipper structure at its C terminus, in addition to a kinase domain at its N terminus. ZIP kinase physically binds to ATF4, a member of the activating transcription factor/cyclic AMP-responsive element-binding protein (ATF/CREB) family, through interaction between their leucine zippers. The leucine zipper domain is necessary for the homodimerization of ZIP kinase as well as for the activation of kinase. Immunostaining study showed that ZIP kinase localizes in the nuclei. Overexpression of intact ZIP kinase but not catalytically inactive kinase mutants led to the morphological changes of apoptosis in NIH 3T3 cells, suggesting that the cell death-inducing activity of ZIP kinase depends on its intrinsic kinase activity. Interestingly, the catalytic domain of ZIP kinase is closely related to that of death-associated protein kinase (DAP kinase), which is a mediator of apoptosis induced by gamma interferon. Therefore, both ZIP and DAP kinases represent a novel kinase family, which mediates apoptosis through their catalytic activities.
Journal of Biological Chemistry | 1998
Hideki Sanjo; Taro Kawai; Shizuo Akira
The present study describes the cloning of two novel serine/threonine kinases termed DRAK1 and DRAK2, whose catalytic domains are related to that of death-associated protein kinase, a serine/threonine kinase involved in apoptosis. Both DRAKs are composed of the N-terminal catalytic domain and the C-terminal domain that is responsible for regulation of kinase activity. DRAK1 and DRAK2 show 59.7% identity and display ubiquitous expression. An in vitro kinase assay revealed that both DRAKs are autophosphorylated and phosphorylate myosin light chain as an exogenous substrate, although the kinase activity of DRAK2 is significantly lower than that of DRAK1. Both DRAKs are exclusively localized to the nucleus. Furthermore, overexpression of both DRAKs induces the morphological changes of apoptosis in NIH 3T3 cells, suggesting the role of DRAKs in apoptotic signaling.
Journal of Experimental Medicine | 2005
Hisaaki Shinohara; Tomoharu Yasuda; Yuichi Aiba; Hideki Sanjo; Megumi Hamadate; Hiroshi Watarai; Hiroaki Sakurai; Tomohiro Kurosaki
The B cell antigen receptor (BCR)–mediated activation of IκB kinase (IKK) and nuclear factor–κB require protein kinase C (PKC)β; however, the mechanism by which PKCβ regulates IKK is unclear. Here, we demonstrate that another protein kinase, TGFβ-activated kinase (TAK)1, is essential for IKK activation in response to BCR stimulation. TAK1 interacts with the phosphorylated CARMA1 (also known as caspase recruitment domain [CARD]11, Bimp3) and this interaction is mediated by PKCβ. IKK is also recruited to the CARMA1–Bcl10–mucosal-associated lymphoid tissue 1 adaptor complex in a PKCβ-dependent manner. Hence, our data suggest that phosphorylation of CARMA1, mediated by PKCβ, brings two key protein kinases, TAK1 and IKK, into close proximity, thereby allowing TAK1 to phosphorylate IKK.