Hidemaro Suwa
Boston University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hidemaro Suwa.
Physical Review Letters | 2010
Hidemaro Suwa; Synge Todo
We present a specific algorithm that generally satisfies the balance condition without imposing the detailed balance in the Markov chain Monte Carlo. In our algorithm, the average rejection rate is minimized, and even reduced to zero in many relevant cases. The absence of the detailed balance also introduces a net stochastic flow in a configuration space, which further boosts up the convergence. We demonstrate that the autocorrelation time of the Potts model becomes more than 6 times shorter than that by the conventional Metropolis algorithm. Based on the same concept, a bounce-free worm algorithm for generic quantum spin models is formulated as well.
Physical Review B | 2015
Arnab Sen; Hidemaro Suwa; Anders W. Sandvik
We test three different approaches, based on quantum Monte Carlo simulations, for computing the velocity
arXiv: Statistical Mechanics | 2013
Synge Todo; Hidemaro Suwa
c
Archive | 2014
Hidemaro Suwa
of triplet excitations in antiferromagnets. We consider the standard
Physical Review B | 2018
Gia-Wei Chern; Kipton Barros; Zhentao Wang; Hidemaro Suwa; C. D. Batista
S=1/2
Physical Review E | 2017
Toshiki Horita; Hidemaro Suwa; Synge Todo
one- and two-dimensional Heisenberg models, as well as a bilayer Heisenberg model at its critical point. Computing correlation functions in imaginary time and using their long-time behavior, we extract the lowest excitation energy versus momentum using improved fitting procedures and a generalized moment method. The velocity is then obtained from the dispersion relation. We also exploit winding numbers to define a cubic space-time geometry, where the velocity is obtained as the ratio of the spatial and temporal lengths of the system when all winding number fluctuations are equal. The two methods give consistent results for both ordered and critical systems, but the winding number estimator is more precise. For the Heisenberg chain, we accurately reproduce the exactly known velocity. For the two-dimensional Heisenberg model, our results are consistent with other recent calculations, but with an improved statistical precision,
Journal of the Physical Society of Japan | 2017
Kazuya Nomura; Yasuhiro H. Matsuda; Yasuo Narumi; Koichi Kindo; S. Takeyama; Yuko Hosokoshi; Toshio Ono; Naoya Hasegawa; Hidemaro Suwa; Synge Todo
c=1.65847(4)
Bulletin of the American Physical Society | 2015
Hidemaro Suwa; Shinya Yasuda; Synge Todo
. We also use the hydrodynamic relation
Archive | 2014
Hidemaro Suwa
{c}^{2}={\ensuremath{\rho}}_{s}/{\ensuremath{\chi}}_{\ensuremath{\perp}}(q\ensuremath{\rightarrow}0)
Archive | 2014
Hidemaro Suwa
between