Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidemi Ishii is active.

Publication


Featured researches published by Hidemi Ishii.


Xenobiotica | 2007

Biotransformation and cytotoxicity of a brominated flame retardant, tetrabromobisphenol A, and its analogues in rat hepatocytes

Y. Nakagawa; T. Suzuki; Hidemi Ishii; A. Ogata

The metabolism and cytotoxic effects of tetrabromobisphenol A (TBBPA), a phenolic flame retardant, and its analogues were studied in freshly isolated rat hepatocytes and isolated hepatic mitochondria, respectively. The exposure of hepatocytes to TBBPA caused not only concentration (0.25–1.0u2009mM)- and time- (0–3u2009h) dependent cell death accompanied by the loss of cellular ATP, adenine nucleotide pools, reduced glutathione, and protein thiols, but also the accumulation of oxidized glutathione and malondialdehyde, indicating lipid peroxidation. TBBPA at a weakly toxic level (0.25u2009mM) was metabolized to monoglucuronide and monosulfate conjugates: the amounts of glucuronide rather than sulfate conjugate predominantly increased, accompanied by a loss of the parent compound, with time. In comparative effects based on cell viability, mitochondrial membrane potential and some toxic parameters, bisphenol A (BPA) was less toxic than TBBPA and tetrachlorobisphenol A (TCBPA), which are not significant differences in these parameters. In mitochondria isolated from rat liver, TBBPA and TCBPA caused an increase in the rate of State 4 oxygen consumption in the presence of succinate, indicating an uncoupling effect and a decrease in the rate of State 3 oxygen consumption in a concentration-dependent manner (5–25u2009µM). Taken collectively, our results indicate that (i) mitochondria are target organelles for TBBPA, which elicits cytotoxicity through mitochondrial dysfunction related to oxidative phosphorylation at an early stage and subsequently lipid peroxidation at a later stage; and (ii) the toxicity of TBBPA and TCBPA is greater than that of BPA, suggesting the participation of halogen atoms such as bromine and chlorine in the toxicity.


Archives of Toxicology | 2009

Cytotoxic effects of 3,4-methylenedioxy-N-alkylamphetamines, MDMA and its analogues, on isolated rat hepatocytes

Yoshio Nakagawa; Toshinari Suzuki; Sumiko Tayama; Hidemi Ishii; Akio Ogata

The amphetamine-derived designer drugs have been illegally used worldwide as recreational drugs, some of which are known to be hepatotoxic in humans. To compare their cytotoxic effects, 3,4-methylenedioxy-N-methamphetamine (MDMA) and its related analogues, N-methyl-1-(3,4-methylenedioxyphenyl)-2-butanamine (MBDB), 3,4-(methylenedioxyphenyl)-2-butanamine (BDB) and 2-methylamino-1-(3,4-methylenedioxyphenyl)-propane-1-one (methylone) were studied in freshly isolated rat hepatocytes. MBDB caused not only concentration (0–4.0xa0mM)- and time (0–2xa0h)-dependent cell death accompanied by the formation of cell blebs, and the loss of cellular ATP and adenine nucleotide pools, and reduced glutathione levels, but also the accumulation of oxidized glutathione. Of the other analogues examined, the cytotoxicity of MBDB and BDB was greater than that of MDMA and methylone, suggesting that hepatotoxicity is generally induced by these drugs. In addition, DNA damage and the induction of reactive oxygen species were greater after the incubation of hepatocytes with MBDB (2 and 4xa0mM) than after that with MDMA. In isolated liver mitochondria, MBDB/BDB resulted in a greater increase in the rate of state 4 oxygen consumption than did MDMA/methylone, indicating an uncoupling effect and a decrease in the rate of state 3 oxygen consumption in a concentration dependent manner. Furthermore, MBDB resulted in mitochondrial swelling dependent on the mitochondrial permeability transition (MPT); the effect of MDMA was less than that of MBDB. Taken collectively, these results suggest that (1) the onset of cytotoxicity caused by designer drugs such as MBDB and MDMA is linked to mitochondrial failure dependent upon the induction of the MPT accompanied by mitochondrial depolarization and depletion of ATP through uncoupling of oxidative phosphorylation in rat hepatocytes, and (2) MBDB and MDMA elicit DNA damage, suggesting that nuclei as well as mitochondria are target sites of these compounds.


Archives of Toxicology | 2011

Cytotoxic effects of hydroxylated fullerenes on isolated rat hepatocytes via mitochondrial dysfunction

Yoshio Nakagawa; Toshinari Suzuki; Hidemi Ishii; Dai Nakae; Akio Ogata

The cytotoxic effects of hydroxylated fullerenes, also termed fullerenols or fullerols [C60(OH)n], which are known nanomaterials and water-soluble fullerene derivatives, were studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to C60(OH)24 caused not only concentration (0–0.25xa0mM)- and time (0–3xa0h)-dependent cell death accompanied by the formation of cell blebs, loss of cellular ATP, reduced glutathione (GSH), and protein thiol levels, but also the accumulation of glutathione disulfide and malondialdehyde, indicating lipid peroxidation. Of the other analogues examined, the cytotoxic effects of C60(OH)12 and fullerene C60 at a concentration of 0.125xa0mM were less than those of C60(OH)24. The loss of mitochondrial membrane potential and generation of oxygen radical species in hepatocytes incubated with C60(OH)24 were greater than those with C60(OH)12 and fullerene C60. In the oxygen consumption of mitochondria isolated from rat liver, the ratios of state-3/state-4 respiration were more markedly decreased by C60(OH)24 and C60(OH)12 compared with C60. In addition, C60(OH)24 and C60(OH)12 resulted in the induction of the mitochondrial permeability transition (MPT), and the effects of C60(OH)12 were less than those of C60(OH)24. Taken collectively, these results indicate that (a) mitochondria are target organelles for fullerenols, which elicit cytotoxicity through mitochondrial failure related to the induction of the MPT, mitochondrial depolarization, and inhibition of ATP synthesis in the early stage and subsequently oxidation of GSH and protein thiols, and lipid peroxidation through oxidative stress at a later stage; and (b) the toxic effects of fullerenols may depend on the number of hydroxyl groups participating in fullerene in rat hepatocytes.


Cancer Letters | 2000

Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin

Yoshitaka Hosaka; Toshiyuki Higuchi; Michiko Tsumagari; Hidemi Ishii

Thrombomodulin (TM) is an anticoagulant molecule expressed on the endothelial cell surface and soluble TM antigen, which is present in human plasma and urine, represents the products of limited proteolytic cleavage of cell-surface TM. Recently, it was demonstrated that TM is also expressed on the surface of several tumor cells and the expression level of TM negatively correlated with malignancy in cancer. We investigated the effect of soluble TM isolated from human urine (uTM) on the invasion and metastasis of murine melanoma cells (B16F10 cells) through a reconstituted basement membrane (Matrigel) and in a murine model of experimental lung metastasis. Matrigel reconstituted with uTM inhibited the invasion of B16F10 cells in a dose-dependent manner in a range from 10 to 1000 ng/ml uTM as compared with the control Matrigel without uTM. The inhibitory action of uTM was not altered in the presence of an excess amount of hirudin, an inhibitor of thrombin proteolytic activity, but abolished in the presence of anti-human TM IgG. Matrigel reconstituted with thrombin (1 NIH unit/ml) enhanced the invasion level of cells by 1.5-fold relative to the control Matrigel without thrombin. The thrombin-enhanced invasion of B16F10 cells was repressed by addition of hirudin (10 units/ml) or uTM (100 ng/ml) into the Matrigel. Matrigel reconstituted with hirudin (10 units/ml) and uTM (100 ng/ml) additionally accelerated the inhibitory activity of hirudin or uTM on the thrombin-enhanced invasion of B16F10 cells. Moreover, metastatic colonies formed in the lungs of mice injected intravenously with B16F10 cells were significantly reduced by injection of uTM once a day up to 2 days after co-injection of uTM with the cells. These results suggested that Matrigel reconstituted with uTM inhibited the invasion of B16F10 cells in vitro through a thrombin-independent mechanism and the injection of uTM suppressed experimental lung metastasis of the cells in mice.


European Journal of Pharmacology | 2003

Carboxypeptidase B inhibitors reduce tissue factor-induced renal microthrombi in rats

Yuko Muto; Kokichi Suzuki; Eriko Sato; Hidemi Ishii

Procarboxypeptidase B (also known as thrombin-activatable fibrinolysis inhibitor) is a recently described plasma zymogen known to be activated by thrombin in plasma. Carboxy-terminal lysine residues from partially degraded fibrin are important for the binding and activation of plasminogen, and carboxypeptidase B, an active form of procarboxypeptidase B, has been shown to inhibit fibrinolysis by eliminating these residues. The present paper investigates the effects of carboxypeptidase B inhibitors, DL-mercaptomethyl-3-guanidinoethylthiopropanoic acid (MGPA) and potato-derived carboxypeptidase inhibitor (CPI), on tissue factor (TF)-induced microthrombosis in rats. Intravenous injection of MGPA (3 mg/kg and higher) or CPI (0.3 mg/kg and higher) after microthrombi formation dramatically attenuated TF-induced glomerular fibrin deposition with an increase in plasma levels of D-dimer. These results indicate that carboxypeptidase B inhibitors can enhance endogenous fibrinolysis and reduce thrombi in the TF-induced microthrombosis model after systemic administration even after thrombi formation.


Biochemical Pharmacology | 2008

Sp1 is an essential transcription factor for LPS-induced tissue factor expression in THP-1 monocytic cells, and nobiletin represses the expression through inhibition of NF-κB, AP-1, and Sp1 activation

Yuki Hirata; Yutaka Masuda; Hideki Kakutani; Toshiyuki Higuchi; Kimihiko Takada; Akira Ito; Yoshio Nakagawa; Hidemi Ishii

Nobiletin is a citrus polymethoxylated flavonoid extracted from Citrus depressa, and has several reported biological effects. In this study, we investigated the effect of nobiletin on bacterial lipopolysaccharide (LPS)-induced expression of tissue factor (TF), a trigger protein for the blood coagulation cascade, and studied the possible mechanism of TF transcriptional regulation. THP-1 monocytic cells stimulated with LPS showed an increased expression of both TF protein and mRNA levels. However, pretreatment with nobiletin resulted in inhibition of LPS-induced expression of both TF protein and mRNA in a dose-dependent manner. Electrophoretic mobility shift assays revealed that binding of nuclear proteins from LPS-stimulated THP-1 cells to the NF-kappaB or AP-1 binding motif was increased as compared to non-stimulated control cells. Such increased binding activities were significantly reduced by pretreatment with nobiletin. Binding activity of nuclear proteins to the Sp1 binding motif was observed irrespective of LPS stimulation, but Sp1 activation was inhibited by nobiletin treatment of the cells. Treatment of THP-1 cells with Sp1-specific small interfering RNA (Sp1 siRNA) abolished the ability of LPS to induce TF activity. A similar reduction in the level of TF mRNA was also observed upon treatment of cells with Sp1 siRNA. These studies reveal that constitutive Sp1 activation is an essential event for transcriptional activation of TF, and nobiletin prevents LPS-induced TF expression by inhibiting NF-kappaB, AP-1, and Sp1 activation.


Critical Care Medicine | 2009

EF6265, a novel inhibitor of activated thrombin-activatable fibrinolysis inhibitor, protects against sepsis-induced organ dysfunction in rats.

Yuko Muto; Kokichi Suzuki; Hiroyuki Iida; Shiro Sakakibara; Emiko Kato; Fumi Itoh; Nobukazu Kakui; Hidemi Ishii

Objective:Although thrombin-activatable fibrinolysis inhibitor (TAFI) has been implicated as a negative regulator of fibrinolysis, its pathophysiological significance remains to be unveiled. We performed the pharmacologic study to assess the effect of EF6265, a specific inhibitor of activated form of TAFI (TAFIa) on sepsis-induced organ dysfunction models. Design:A controlled, in vivo laboratory study. Setting:Company research laboratory. Subjects:Wistar and Sprague–Dawley rats. Interventions:Endotoxemia and sepsis models were induced by intravenous injection of lipopolysaccharide and Pseudomonas aeruginosa, respectively. Measurements and Main Results:In the endotoxemia model, posttreatment (1 hour) with EF6265 reduced fibrin deposits in the kidney and liver accompanied by no significant changes in platelet count and fibrinogen concentration in plasma. This compound also significantly decreased levels of plasma lactate dehydrogenase and aspartate aminotransferase, markers of organ dysfunction. In the sepsis model, EF6265, simultaneously administered with ceftazidime (CAZ) 2 hours after Pseudomonas aeruginosa injection, showed no influence on the antibiotic activity of CAZ. Meanwhile, it dramatically potentiated the interleukin-6–reducing effect of CAZ in plasma, suggesting that inhibition of TAFIa leads to the reduction in systemic inflammatory response associated with bacterial infection. This combined treatment also lowered plasma lactate dehydrogenase and blood urea nitrogen more potently than single treatment with CAZ. Conclusions:These results clearly suggest that TAFI plays an important role in the deterioration of organ dysfunction in sepsis and the inhibitor of TAFIa protects against sepsis-induced tissue damage through regulation of fibrinolysis and inflammation.


Chemico-Biological Interactions | 2009

Biotransformation and cytotoxic effects of hydroxychavicol, an intermediate of safrole metabolism, in isolated rat hepatocytes

Yoshio Nakagawa; Toshinari Suzuki; Kazuo Nakajima; Hidemi Ishii; Akio Ogata

The biotransformation and cytotoxic effects of hydroxychavicol (HC; 1-allyl-3,4-dihydroxybenzene), which is a catecholic component in piper betel leaf and a major intermediary metabolite of safrole in rats and humans, was studied in freshly isolated rat hepatocytes. The exposure of hepatocytes to HC caused not only concentration (0.25-1.0mM)- and time (0-3h)-dependent cell death accompanied by the loss of cellular ATP, adenine nucleotide pools, reduced glutathione, and protein thiols, but also the accumulation of glutathione disulfide and malondialdehyde, indicating lipid peroxidation. At a concentration of 1mM, the cytotoxic effects of safrole were less than those of HC. The loss of mitochondrial membrane potential and generation of oxygen radical species assayed using 2,7-dichlorodihydrofluoresein diacetate (DCFH-DA) in hepatocytes treated with HC were greater than those with safrole. HC at a weakly toxic level (0.25 and/or 0.50mM) was metabolized to monoglucuronide, monosulfate, and monoglutathione conjugates, which were identified by mass spectra and/or (1)H nuclear magnetic resonance spectra. The amounts of sulfate rather than glucuronide or glutathione conjugate predominantly increased, accompanied by a loss of the parent compound, with time. In hepatocytes pretreated with either diethyl maleate or salicylamide, HC-induced cytotoxicity was enhanced, accompanied by a decrease in the formation of these conjugates and by the inhibition of HC loss. Taken collectively, our results indicate that (a) mitochondria are target organelles for HC, which elicits cytotoxicity through mitochondrial failure related to mitochondrial membrane potential at an early stage and subsequently lipid peroxidation through oxidative stress at a later stage; (b) the onset of cytotoxicity depends on the initial and residual concentrations of HC rather than those of its metabolites; (c) the toxicity of HC is greater than that of safrole, suggesting the participation of a catecholic intermediate in safrole cytotoxicity in rat hepatocytes.


Journal of Medicinal Chemistry | 2013

Structural basis for inhibition of carboxypeptidase B by selenium-containing inhibitor: selenium coordinates to zinc in enzyme.

Nobuko Yoshimoto; Toshimasa Itoh; Yuka Inaba; Hidemi Ishii; Keiko Yamamoto

Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) is a zinc-containing carboxypeptidase and significantly inhibits fibrinolysis. TAFIa inhibitors are thus expected to act as profibrinolytic agents. We recently reported the design and synthesis of selenium-containing inhibitors of TAFIa and their inhibitory activity. Here we report the crystal structures of potent selenium-, sulfur-, and phosphinic acid-containing inhibitors bound to porcine pancreatic carboxypeptidase B (ppCPB). ppCPB is a TAFIa homologue and is surrogate TAFIa for crystallographic analysis. Crystal structures of ppCPB complexed with selenium compound 1a, its sulfur analogue 2, and phosphinic acid derivative EF6265 were determined at 1.70, 2.15, and 1.90 Å resolution, respectively. Each inhibitor binds to the active site of ppCPB in a similar manner to that observed for previously reported inhibitors. Thus, in complexes, selenium, sulfur, and phosphinic acid oxygen coordinate to zinc in ppCPB. This is the first observation and report of selenium coordinating to zinc in CPB.


Journal of Medicinal Chemistry | 2012

Design and characterization of a selenium-containing inhibitor of activated thrombin-activatable fibrinolysis inhibitor (TAFIa), a zinc-containing metalloprotease.

Nobuko Yoshimoto; Tomoyuki Sasaki; Katsuyoshi Sugimoto; Hidemi Ishii; Keiko Yamamoto

Available therapies for thromboembolic disorders include thrombolytics, anticoagulants, and antiplatelets, but these are associated with complications such as bleeding. To develop an alternative drug which is clinically safe, we focused on activated thrombin-activatable fibrinolysis inhibitor (TAFIa) as the target molecule. TAFIa is a zinc-containing carboxypeptidase that significantly inhibits fibrinolysis. Here we designed and synthesized selenium-containing compounds 5-13 to discover novel TAFIa inhibitors having a superior zinc-coordinating group. Compounds 5-13 significantly inhibited TAFIa activity (IC(50) 2.2 × 10(-12) M - 2.6 × 10(-6) M). We found that selenol is a better functional group than thiol for coordinating to zinc at the active site of TAFIa. Furthermore, compound 12, which has an amino-chloro-pyridine ring, was found to be a potent and selective TAFIa inhibitor that lacks carboxypeptidase N inhibitory activity. Therefore, compound 12 is a promising candidate for the treatment of thromboembolic disorders. This is the first report of a selenium-containing inhibitor for TAFIa.

Collaboration


Dive into the Hidemi Ishii's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshiyuki Higuchi

Nihon Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kimihiko Takada

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Yamamoto

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Nobuko Yoshimoto

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Dai Nakae

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Hideki Kakutani

Showa Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge