Hidemi Kajimoto
Kurume University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hidemi Kajimoto.
American Journal of Respiratory and Critical Care Medicine | 2011
Thenappan Thenappan; Ankush Goel; Glenn Marsboom; Yong Hu Fang; Peter T. Toth; Hannah J. Zhang; Hidemi Kajimoto; Zhigang Hong; Jonathan Paul; Christian Wietholt; Jennifer Pogoriler; Lin Piao; Jalees Rehman; Stephen L. Archer
RATIONALE The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS. OBJECTIVES We hypothesized that macrophages are central to HPS and investigated the therapeutic potential of macrophage depletion. METHODS Hemodynamics, alveolar-arterial gradient, vascular reactivity, and histology were assessed in CBDL versus sham rats (n = 21 per group). The effects of plasma on smooth muscle cell proliferation and endothelial tube formation were measured. Macrophage depletion was used to prevent (gadolinium) or regress (clodronate) HPS. CD68(+) macrophages and capillary density were measured in the lungs of patients with cirrhosis versus control patients (n = 10 per group). MEASUREMENTS AND MAIN RESULTS CBDL increased cardiac output and alveolar-arterial gradient by causing capillary dilatation and arteriovenous malformations. Activated CD68(+)macrophages (nuclear factor-κB+) accumulated in HPS pulmonary arteries, drawn by elevated levels of plasma endotoxin and lung monocyte chemoattractant protein-1. These macrophages expressed inducible nitric oxide synthase, vascular endothelial growth factor, and platelet-derived growth factor. HPS plasma increased endothelial tube formation and pulmonary artery smooth muscle cell proliferation. Macrophage depletion prevented and reversed the histological and hemodynamic features of HPS. CBDL lungs demonstrated increased medial thickness and obstruction of small pulmonary arteries. Nitric oxide synthase inhibition unmasked exaggerated pulmonary vasoconstrictor responses in HPS. Patients with cirrhosis had increased pulmonary intravascular macrophage accumulation and capillary density. CONCLUSIONS HPS results from intravascular accumulation of CD68(+)macrophages. An occult proliferative vasculopathy may explain the occasional transition to portopulmonary hypertension. Macrophage depletion may have therapeutic potential in HPS.
Hypertension | 2009
Hiroshi Kudo; Hisashi Kai; Hidemi Kajimoto; Mitsuhisa Koga; Narimasa Takayama; Takahiro Mori; Ayami Ikeda; Suguru Yasuoka; Takahiro Anegawa; Hiroharu Mifune; Seiya Kato; Yoshitaka Hirooka; Tsutomu Imaizumi
Hypertensive patients with large blood pressure variability (BPV) have aggravated end-organ damage. However, the pathogenesis remains unknown. We investigated whether exaggerated BPV aggravates hypertensive cardiac remodeling and function by activating inflammation and angiotensin II–mediated mechanisms. A model of exaggerated BPV superimposed on chronic hypertension was created by performing bilateral sinoaortic denervation (SAD) in spontaneously hypertensive rats (SHRs). SAD increased BPV to a similar extent in Wistar Kyoto rats and SHRs without significant changes in mean blood pressure. SAD aggravated left ventricular and myocyte hypertrophy and myocardial fibrosis to a greater extent and impaired left ventricular systolic function in SHRs. SAD induced monocyte chemoattractant protein-1, transforming growth factor-&bgr;, and angiotensinogen mRNA upregulations and macrophage infiltration of the heart in SHRs. The effects of SAD on cardiac remodeling and inflammation were much smaller in Wistar Kyoto rats compared with SHRs. Circulating levels of norepinephrine, the active form of renin, and inflammatory cytokines were not affected by SAD in Wistar Kyoto rats and SHRs. A subdepressor dose of candesartan abolished the SAD-induced left ventricular/myocyte hypertrophy, myocardial fibrosis, macrophage infiltration, and inductions of monocyte chemoattractant protein-1, transforming growth factor-&bgr;, and angiotensinogen and subsequently prevented systolic dysfunction in SHRs with SAD. These findings suggest that exaggerated BPV induces chronic myocardial inflammation and thereby aggravates cardiac remodeling and systolic function in hypertensive hearts. The cardiac angiotensin II system may play a role in the pathogenesis of cardiac remodeling and dysfunction induced by a combination of hypertension and exaggerated BPV.
Kidney International | 2012
Hidemi Kajimoto; Hisashi Kai; Hiroki Aoki; Suguru Yasuoka; Takahiro Anegawa; Yuji Aoki; Seiji Ueda; Seiya Okuda; Tsutomu Imaizumi
Patients with chronic kidney disease have elevated circulating asymmetric dimethylarginine (ADMA). Recent studies have suggested that ADMA impairs endothelial nitric oxide synthase (eNOS) by effects other than competition with the substrate L-arginine. Here, we sought to identify the molecular mechanism by which increased ADMA causes endothelial dysfunction in a chronic kidney disease model. In wild-type mice with remnant kidney disease, blood urea nitrogen, serum creatinine, and ADMA were increased by 2.5-, 2-, and 1.2-fold, respectively, without any change in blood pressure. Nephrectomy reduced endothelium-dependent relaxation and eNOS phosphorylation at Ser1177 in isolated aortic rings. In transgenic mice overexpressing dimethylarginine dimethylaminohydrolase-1, the enzyme that metabolizes ADMA, circulating ADMA was not increased by nephrectomy and was decreased to half that of wild-type mice. These mice did not exhibit the nephrectomy-induced inhibition of both endothelium-dependent relaxation and eNOS phosphorylation. In cultured human endothelial cells, agonist-induced eNOS phosphorylation and nitric oxide production were decreased by ADMA at concentrations less than that of L-arginine in the media. Thus, elevated circulating ADMA may be a cause, not an epiphenomenon, of endothelial dysfunction in chronic kidney disease. This effect may be attributable to inhibition of eNOS phosphorylation.
Pediatric Research | 2008
Bernard Thébaud; Xichen Wu; Hidemi Kajimoto; Sandra Bonnet; Kyoko Hashimoto; Evangelos D. Michelakis; Stephen L. Archer
Patent ductus arteriosus (PDA) complicates the hospital course of premature infants. Impaired oxygen (O2)-induced vasoconstriction in preterm ductus arteriosus (DA) contributes to PDA and results, in part, from decreased function/expression of O2-sensitive, voltage-gated potassium channels (Kv) in DA smooth muscle cells (DASMCs). This paradigm suggests that activation of the voltage-sensitive L-type calcium channels (CaL), which increases cytosolic calcium ([Ca2+]i), is a passive consequence of membrane depolarization. However, effective Kv gene transfer only partially matures O2 responsiveness in preterm DA. Thus, we hypothesized that CaL are directly O2 sensitive and that immaturity of CaL function in preterm DA contributes to impaired O2 constriction. We show that preterm rabbit DA rings have reduced O2- and 4-aminopyridine (Kv blocker)–induced constriction. Preterm rabbit DASMCs have reduced O2-induced whole-cell calcium current (ICa) and [Ca2+]i. BAY K8644, a CaL activator, increased O2 constriction, ICa, and [Ca2+]i in preterm DASMCs to levels seen at term but had no effect on human and rabbit term DA. Preterm rabbit DAs have decreased γ and increased α subunit protein expression. We conclude that the CaL in term rabbit and human DASMCs is directly O2 sensitive. Functional immaturity of CaL O2 sensitivity contributes to impaired O2 constriction in premature DA and can be reversed by BAY K8644.
Hypertension Research | 2011
Narimasa Takayama; Hisashi Kai; Hiroshi Kudo; Suguru Yasuoka; Takahiro Mori; Takahiro Anegawa; Mitsuhisa Koga; Hidemi Kajimoto; Yoshitaka Hirooka; Tsutomu Imaizumi
Pronounced variability in blood pressure (BP) is an aggravating factor of hypertensive end-organ damage. However, its pathogenesis remains unknown. Statins have various protective effects on the cardiovascular system. Thus, we determined whether simvastatin would attenuate the aggravation of hypertensive cardiac remodeling in a rat model of hypertension with large BP variability, and also investigated the signaling mechanism involved in its effect. A model of hypertension with large BP variability was created by performing bilateral sinoaortic denervation (SAD) in spontaneously hypertensive rats (SHRs). A SAD or sham operation was performed in 12-week-old rats. Thereafter, simvastatin (0.2 mg kg−1 per day) or vehicle was intraperitoneally administered every day. After 6 weeks , telemetric recordings revealed that SAD enhanced BP variability without changing the mean BP. SAD increased myocyte hypertrophy, myocardial fibrosis and macrophage infiltration associated with the upregulation of brain natriuretic peptide (BNP), type I procollagen, transforming growth factor (TGF)-β and monocyte chemoattractant protein (MCP)-1, and activation of RhoA, Ras and ERK1/2. Simvastatin did not change the mean BP or BP variability in SAD-operated SHRs. In SAD-operated SHRs, simvastatin attenuated myocyte hypertrophy and BNP expression, as well as RhoA, Ras and ERK1/2 activities. In contrast, simvastatin did not change myocardial fibrosis, macrophage infiltration, or the expression of procollagen and TGF-β or MCP-1 in SAD-operated SHRs. Simvastatin did not affect serum lipid levels. In conclusion, simvastatin attenuated the large BP variability-induced aggravation of cardiac hypertrophy, but not myocardial fibrosis, in SHRs. The activation of RhoA/Ras–ERK pathways may contribute to the aggravation of cardiac hypertrophy by a combination of hypertension and large BP variability.
Hypertension Research | 2011
Takahiro Mori; Hisashi Kai; Hidemi Kajimoto; Mitsuhisa Koga; Hiroshi Kudo; Narimasa Takayama; Suguru Yasuoka; Takahiro Anegawa; Mamiko Kai; Tsutomu Imaizumi
Diastolic dysfunction is more prevalent in individuals with hypertension, particularly postmenopausal women; however, the pathogenesis of diastolic dysfunction remains unknown. Pressure overload activates cardiac inflammation, which induces myocardial fibrosis and diastolic dysfunction in rats with a suprarenal aortic constriction (AC). Therefore, we examined the effects of bilateral ovariectomy (OVX) on left ventricle (LV) remodeling, diastolic dysfunction and cardiac inflammation in hypertensive female rats. Rats were randomized to OVX+AC, OVX and AC groups as well as a Control group receiving sham operations for both the procedures. Rats underwent OVX at 6 weeks and AC at 10 weeks (Day 0). At Day 28, OVX did not appear to affect arterial pressure, cardiac hypertrophy or LV fractional shortening in AC rats. However, OVX increased myocardial fibrosis, elevated LV end-diastolic pressure and reduced the transmitral Doppler spectra early to late filling velocity ratio in AC rats. AC-induced transient myocardial monocyte chemoattractant protein-1 expression and macrophage infiltration, both of which peaked at Day 3 and were augmented and prolonged by OVX. At Day 28, dihydroethidium staining revealed superoxide generation in the intramyocardial arterioles in the OVX+AC group but not in the AC group. NOX1, a functional subunit of nicotinamide adenine dinucleotide phosphate oxidase, was upregulated only in the OVX+AC group at Day 28. Chronic 17β-estradiol replacement prevented the increases in macrophage infiltration, NOX1 upregulation, myocardial fibrosis and diastolic dysfunction in OVX+AC rats. In conclusion, we suggest that estrogen deficiency augments cardiac inflammation and oxidative stress and thereby aggravates myocardial fibrosis and diastolic dysfunction in hypertensive female rats. The findings provide insight into the mechanism underlying diastolic dysfunction in hypertensive postmenopausal women.
International Journal of Cardiology | 2012
Takahiro Anegawa; Hisashi Kai; Hisashi Adachi; Yuji Hirai; Mika Enomoto; Ako Fukami; Maki Otsuka; Hidemi Kajimoto; Suguru Yasuoka; Yoshiko Iwamoto; Yuji Aoki; Kenji Fukuda; Tsutomu Imaizumi
by the working status and the presence of CVD will be shown against the control group. The severity of CVD was not considered in their analysis, and expenditure for CVD medication was not considered while evaluating the association between CVD and income poverty. I would like to recommend further analysis with separation of their global definition of CVD into each disease component and also by considering the comorbidity of CVD with other diseases, which would yield precise information on the association between income poverty and chronic health conditions. I wish to express my appreciation to the members of Hygiene and Public Health, Nippon Medical School, for the preparation of this study. The author of this manuscript has certified that they comply with the Principles of Ethical Publishing in the International Journal of Cardiology (2010;144:1–2.).
Kidney International | 2015
Hidemi Kajimoto; Hisashi Kai; Hiroki Aoki; Hiroki Uchiwa; Yuji Aoki; Suguru Yasuoka; Takahiro Anegawa; Yuji Mishina; Akira Suzuki; Yoshihiro Fukumoto; Tsutomu Imaizumi
The molecular mechanisms of endothelial dysfunction and vascular calcification have been considered independently and potential links are currently unknown in chronic kidney disease (CKD). Bone morphogenetic protein (BMP) receptor signaling mediates calcification of atherosclerotic plaques. Here we tested whether BMP receptor signaling contributes to endothelial dysfunction, as well as to osteogenic differentiation of vascular smooth muscle cells (VSMCs), in a model of short-term CKD. In C57BL/6 mice, subtotal nephrectomy activated BMP receptor and increased phosphatase-and-tensin homolog (PTEN) protein in the endothelial cells and medial VSMCs without vascular remodeling in the aorta. In the endothelial cells, PTEN induction led to inhibition of the Akt-endothelial nitric oxide synthase (eNOS) pathway and endothelial dysfunction. In VSMCs, the PTEN increase induced early osteogenic differentiation. CKD-induced inhibition of eNOS phosphorylation and the resultant endothelial dysfunction were inhibited in mice with endothelial cell-specific PTEN ablation. Knockout of the BMP type I receptor abolished endothelial dysfunction, the inhibition of eNOS phosphorylation, and VSMC osteogenic differentiation in mice with CKD. A small molecule inhibitor of BMP type I receptor, LDN-193189, prevented endothelial dysfunction and osteogenic differentiation in CKD mice. Thus, BMP receptor activation is a mechanism for endothelial dysfunction in addition to vascular osteogenic differentiation in a short-term CKD model. PTEN may be key in linking BMP receptor activation and endothelial dysfunction in CKD.
PLOS ONE | 2014
Takaharu Nakayoshi; Ken-ichiro Sasaki; Hidemi Kajimoto; Hiroshi Koiwaya; Masanori Ohtsuka; Takafumi Ueno; Hidetoshi Chibana; Naoki Itaya; Masahiro Sasaki; Shinji Yokoyama; Yoshihiro Fukumoto; Tsutomu Imaizumi
The effects of therapeutic angiogenesis by intramuscular injection of early pro-angiogenic cells (EPCs) to ischemic limbs are unsatisfactory. Oxidative stress in the ischemic limbs may accelerate apoptosis of injected EPCs, leading to less neovascularization. Forkhead transcription factor 4 (FOXO4) was reported to play a pivotal role in apoptosis signaling of EPCs in response to oxidative stress. Accordingly, we assessed whether FOXO4-knockdown EPCs (FOXO4KD-EPCs) could suppress the oxidative stress-induced apoptosis and augment the neovascularization capacity in ischemic limbs. We transfected small interfering RNA targeted against FOXO4 of human EPCs to generate FOXO4KD-EPCs and confirmed a successful knockdown. FOXO4KD-EPCs gained resistance to apoptosis in response to hydrogen peroxide in vitro. Oxidative stress stained by dihydroethidium was stronger for the immunodeficient rat ischemic limb tissue than for the rat non-ischemic one. Although the number of apoptotic EPCs injected into the rat ischemic limb was greater than that of apoptotic EPCs injected into the rat non-ischemic limb, FOXO4KD-EPCs injected into the rat ischemic limb brought less apoptosis and more neovascularization than EPCs. Taken together, the use of FOXO4KD-EPCs with resistance to oxidative stress-induced apoptosis may be a new strategy to augment the effects of therapeutic angiogenesis by intramuscular injection of EPCs.
Heart and Vessels | 2017
Hidetoshi Chibana; Hidemi Kajimoto; Takafumi Ueno; Shinji Yokoyama; Ken-ichiro Sasaki; Masanori Ohtsuka; Hiroshi Koiwaya; Takaharu Nakayoshi; Yoshiaki Mitsutake; Naoki Itaya; Masahiro Sasaki; Yoshihiro Fukumoto
Implantation of mammalian target of rapamycin (mTOR)-inhibitor drug-eluting stents (DESs) impairs coronary endothelial function. There are no known non-invasive biomarkers of coronary endothelial dysfunction. We aimed to assess the association between serum interleukin-1beta (IL-1β) and coronary endothelial dysfunction in patients with mTOR-inhibitor DES implantation and to investigate the association between the mTOR pathway and IL-1β. We enrolled 35 patients who had implanted DESs for coronary artery disease. At a 10-month follow-up, peripheral venous blood samples were collected to measure IL-1β levels. Coronary endothelial dysfunction was evaluated by intracoronary infusion of incremental doses of acetylcholine. Serum IL-1β levels were significantly associated with the magnitude of vasoconstriction to acetylcholine at the segment distal (P < 0.05) but not proximal to the stent. Serum IL-1β levels were positively correlated with stent length (P < 0.05). To examine the direct effects of mTOR inhibition on IL-1β release, sirolimus was incubated in cultured human umbilical vein endothelial cells (HUVECs) or coronary artery smooth muscle cells (CASMCs). Sirolimus directly increased IL-1β mRNA expression (P < 0.01) and enhanced IL-1β release into the culture media (P < 0.01) in CASMCs, but not in HUVECs. Inhibition of mTOR triggers IL-1β release through transcriptional activation in CASMCs. Serum IL-1β levels are a potential biomarker for mTOR-inhibitor DES-associated coronary endothelial dysfunction.