Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidenori Fukuoka is active.

Publication


Featured researches published by Hidenori Fukuoka.


Journal of Clinical Investigation | 2011

EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas

Hidenori Fukuoka; Odelia Cooper; Anat Ben-Shlomo; Adam N. Mamelak; Song-Guang Ren; Dave Bruyette; Shlomo Melmed

Cushing disease is a condition in which the pituitary gland releases excessive adrenocorticotropic hormone (ACTH) as a result of an adenoma arising from the ACTH-secreting cells in the anterior pituitary. ACTH-secreting pituitary adenomas lead to hypercortisolemia and cause significant morbidity and mortality. Pituitary-directed medications are mostly ineffective, and new treatment options are needed. As these tumors express EGFR, we tested whether EGFR might provide a therapeutic target for Cushing disease. Here, we show that in surgically resected human and canine corticotroph cultured tumors, blocking EGFR suppressed expression of proopiomelanocortin (POMC), the ACTH precursor. In mouse corticotroph EGFR transfectants, ACTH secretion was enhanced, and EGF increased Pomc promoter activity, an effect that was dependent on MAPK. Blocking EGFR activity with gefitinib, an EGFR tyrosine kinase inhibitor, attenuated Pomc expression, inhibited corticotroph tumor cell proliferation, and induced apoptosis. As predominantly nuclear EGFR expression was observed in canine and human corticotroph tumors, we preferentially targeted EGFR to mouse corticotroph cell nuclei, which resulted in higher Pomc expression and ACTH secretion, both of which were inhibited by gefitinib. In athymic nude mice, EGFR overexpression enhanced the growth of explanted ACTH-secreting tumors and further elevated serum corticosterone levels. Gefitinib treatment decreased both tumor size and corticosterone levels; it also reversed signs of hypercortisolemia, including elevated glucose levels and excess omental fat. These results indicate that inhibiting EGFR signaling may be a novel strategy for treating Cushing disease.


European Journal of Endocrinology | 2012

Nonalcoholic fatty liver disease in adult hypopituitary patients with GH deficiency and the impact of GH replacement therapy

Hitoshi Nishizawa; Genzo Iguchi; Ayumi Murawaki; Hidenori Fukuoka; Yoshitake Hayashi; Hidesuke Kaji; Masaaki Yamamoto; Kentaro Suda; Michiko Takahashi; Yasushi Seo; Yoshihiko Yano; Riko Kitazawa; Sohei Kitazawa; Masafumi Koga; Yasuhiko Okimura; Kazuo Chihara; Yutaka Takahashi

BACKGROUND Liver dysfunction in adult hypopituitary patients with GH deficiency (GHD) has been reported and an increased prevalence of nonalcoholic fatty liver disease (NAFLD) has been suggested. OBJECTIVE The objective of the present study was to elucidate the pathophysiology of the liver in adult hypopituitary patients with GHD. PATIENTS AND METHODS We recruited 69 consecutive Japanese adult hypopituitary patients with GHD and examined the prevalence of NAFLD by ultrasonography and nonalcoholic steatohepatitis (NASH) by liver biopsy. Patients had been given routine replacement therapy except for GH. We compared these patients with healthy age-, gender-, and BMI-matched controls. We further analyzed the effect of GH replacement therapy on liver function, inflammation and fibrotic markers, and histological changes. RESULTS The prevalence of NAFLD in hypopituitary patients with GHD was significantly higher than in controls (77 vs 12%, P<0.001). Of 16 patients assessed by liver biopsy, 14 (21%) patients were diagnosed with NASH. GH replacement therapy significantly reduced serum liver enzyme concentrations in the patients and improved the histological changes in the liver concomitant with reduction in fibrotic marker concentrations in patients with NASH. CONCLUSIONS Adult hypopituitary patients with GHD demonstrated a high NAFLD prevalence. The effect of GH replacement therapy suggests that the NAFLD is predominantly attributable to GHD.


Endocrinology | 2011

Reactive oxygen species play an essential role in Igf-i signaling and Igf-i-induced myocyte hypertrophy in C2c12 myocytes.

Anastasia-Evi Handayaningsih; Genzo Iguchi; Hidenori Fukuoka; Hitoshi Nishizawa; Michiko Takahashi; Masaaki Yamamoto; Elizabeth-Henny Herningtyas; Yasuhiko Okimura; Hidesuke Kaji; Kazuo Chihara; Susumu Seino; Yutaka Takahashi

IGF-I induces skeletal muscle hypertrophy by stimulating protein synthesis and suppressing the protein degradation pathway; the downstream signaling pathways Akt-mammalian target of rapamycin (mTOR)-p70-kDA-S6-kinase (p70S6K), and Forkhead box O1 (FoxO1) play essential roles in this regulation. Reactive oxygen species (ROS) modulate the signaling of various growth factors via redox regulation. However, the role of ROS in IGF-I signaling is not fully understood. In this study, we investigated whether ROS regulate the signaling and biological action of IGF-I in C2C12 myocytes. We found that IGF-I induces ROS in C2C12 myocytes. While treatment with H(2)O(2) significantly enhanced IGF-I-induced phosphorylation of the IGF-I receptor (IGF-IR), IGF-IR phosphorylation was markedly attenuated when cells were treated with antioxidants. The downstream signaling pathway, Akt-mTOR-p70S6K was subsequently down-regulated. Furthermore, the phosphorylation of FoxO1 by IGF-I decreased concomitantly with the restoration of the expression of its target genes, Atrogin-1 and muscle RING finger 1, which are related to muscle atrophy. Nox4 knockdown, which is reportedly to produce ROS in insulin signaling, attenuated IGF-I-induced IGF-IR phosphorylation, indicating that Nox4 is involved in the regulation of IGF-I signaling. Importantly, antioxidant treatments inhibited IGF-I-induced myocyte hypertrophy, demonstrating that ROS are necessary for IGF-I-induced myocyte hypertrophy in vitro. These results indicate that ROS play an essential role in the signaling and biological action of IGF-I in C2C12 myocytes.


European Journal of Endocrinology | 2014

The prevalence of IgG4-related hypophysitis in 170 consecutive patients with hypopituitarism and/or central diabetes insipidus and review of the literature

Hironori Bando; Genzo Iguchi; Hidenori Fukuoka; Masaaki Taniguchi; Masaaki Yamamoto; Ryusaku Matsumoto; Kentaro Suda; Hitoshi Nishizawa; Michiko Takahashi; Eiji Kohmura; Yutaka Takahashi

OBJECTIVE The prevalence and clinical characteristics of IgG4-related hypophysitis remain unclear due to the limited number of case reports. Therefore, in this study, we screened consecutive outpatients with hypopituitarism and/or diabetes insipidus (DI) to estimate its prevalence. METHODS A total of 170 consecutive outpatients with hypopituitarism and/or central DI were screened at Kobe University Hospital for detecting IgG4-related hypophysitis by pituitary magnetic resonance imaging, measuring serum IgG4 concentrations, assessing the involvement of other organs, and carrying out an immunohistochemical analysis to detect IgG4-positive cell infiltration. RESULTS Among the screened cases, 116 cases were excluded due to diagnosis of other causes such as tumors and congenital abnormalities. Additionally, 22 cases with isolated ACTH deficiency were analyzed and were found not to meet the criteria of IgG4-related hypophysitis. The remaining 32 cases were screened and seven were diagnosed with IgG4-related hypophysitis, of which three cases were diagnosed by analyzing pituitary specimens. IgG4-related hypophysitis was detected in 30% (seven of 23 patients) of hypophysitis cases and 4% of all hypopituitarism/DI cases. The mean age at the onset of IgG4-related hypophysitis was 61.8±8.8 years, and the serum IgG4 concentration was 191.1±78.3 mg/dl (normal values 5-105 mg/dl and values in IgG4-related disease (RD) ≥135 mg/dl). Pituitary gland and/or stalk swelling was observed in six patients, and an empty sella was observed in one patient. Multiple co-existing organ involvement was observed in four of the seven patients prior to the onset of IgG4-related hypophysitis. CONCLUSION These data suggest that the prevalence of IgG4-related hypophysitis has been underestimated. We should also consider the possibility of the development of hypopituitarism/DI caused by IgG4-related hypophysitis during the clinical course of other IgG4-RDs.


Endocrine-related Cancer | 2011

Expression and function of ErbB receptors and ligands in the pituitary

Odelia Cooper; Hidenori Fukuoka; Mark I Greene; Shlomo Melmed

The role of ErbB family in discreet pituitary functions is reviewed. Several ErbB receptor ligands, EGF, TGFα, and heregulin are differentially expressed in normal gonadotroph and lacto-somatotroph lineages, and other elements of the anterior pituitary. ErbB receptors, i.e. EGFR and ErbB2, are also localized to the anterior pituitary with preferential EGFR lactosomatotroph expression. EGF regulates CRH and ACTH secretion and corticotroph proliferation as well as exhibiting autocrine and paracrine effects on gonadotrophs and on lactosomatotroph proliferation, gene and protein expression, and hormonal secretion. EGF and EGFR are expressed in both functioning and non-functioning pituitary adenomas, with higher expression in more aggressive tumor subtypes. ErbB2 receptor is detected in all tumor subtypes, particularly in invasive tumors. ErbB tyrosine kinase inhibitors regulate hormonal secretion, cell morphology, and proliferation in lacto-somatotroph tumors, reflecting the emerging application of targeted pituitary therapeutics.


Proceedings of the National Academy of Sciences of the United States of America | 2013

SIRT1 regulates adaptive response of the growth hormone--insulin-like growth factor-I axis under fasting conditions in liver

Masaaki Yamamoto; Genzo Iguchi; Hidenori Fukuoka; Kentaro Suda; Hironori Bando; Michiko Takahashi; Hitoshi Nishizawa; Susumu Seino; Yutaka Takahashi

Adaptation under fasting conditions is critical for survival in animals. Sirtuin 1 (SIRT1), a protein deacetylase, plays an essential role in adaptive metabolic and endocrine responses under fasting conditions by modifying the acetylation status of various proteins. Fasting induces growth hormone (GH) resistance in the liver, leading to decreased serum insulin-like growth factor-I (IGF-I) levels as an endocrine adaptation for malnutrition; however, the underlying mechanisms of this action remain to be fully elucidated. Here we report that in vivo knockdown of SIRT1 in the liver restored the fasting-induced decrease in serum IGF-I levels and enhanced the GH-dependent increase in IGF-I levels, indicating that SIRT1 negatively regulates GH-dependent IGF-I production in the liver. In vitro analysis using hepatocytes demonstrated that SIRT1 suppresses GH-dependent IGF-I expression, accompanied by decreased tyrosine phosphorylation on signal transducer and activator of transcription (STAT) 5. GST pull-down assays revealed that SIRT1 interacts directly with STAT5. When the lysine residues adjacent to the SH2 domain of STAT5 were mutated, STAT5 acetylation decreased concomitant with a decrease in its transcriptional activity. Knockdown of SIRT1 enhanced the acetylation and GH-induced tyrosine phosphorylation of STAT5, as well as the GH-induced interaction of the GH receptor with STAT5. These data indicate that SIRT1 negatively regulates GH-induced STAT5 phosphorylation and IGF-I production via deacetylation of STAT5 in the liver. In addition, our findings explain the underlying mechanisms of GH resistance under fasting conditions, which is a known element of endocrine adaptation during fasting.


Biochemical and Biophysical Research Communications | 2012

GH-independent IGF-I action is essential to prevent the development of nonalcoholic steatohepatitis in a GH-deficient rat model

Hitoshi Nishizawa; Michiko Takahashi; Hidenori Fukuoka; Genzo Iguchi; Riko Kitazawa; Yutaka Takahashi

The progression to nonalcoholic steatohepatitis (NASH) from simple steatosis is associated with the mitochondrial dysfunction, enhanced oxidative stress, and inflammation. Recently, it has been reported that the prevalence of NAFLD (nonalcoholic fatty liver disease)/NASH is increased in patients with adult growth hormone deficiency (AGHD), suggesting that the deficiencies in GH and insulin-like growth factor (IGF-I) are involved in the development of NAFLD/NASH; however, the precise underlying mechanism remains to be elucidated. To clarify the mechanisms and the specific contribution of GH and IGF-I in these conditions, we examined the liver of a GH-deficient rat model, spontaneous dwarf rat (SDR) and the effect of GH and IGF-I administration. SDR showed steatosis and fibrosis in the liver in line with the phenotype observed in AGHD. Serum AST and ALT levels and triglyceride content in the liver were significantly increased in the SDR compared with the control. Intriguingly, the mitochondrial morphology in the SDR hepatocyte was impaired and the area was significantly decreased. Furthermore, oxidative stress in the SDR liver was enhanced. These changes were improved not only by GH but also by IGF-I administration, suggesting that GH-independent IGF-I action plays an essential role in the liver. In conclusion, we demonstrated that GH-deficient rat exhibits NASH and IGF-I plays an essential role to prevent the development of NASH. The improved mitochondrial function and reduced oxidative stress may contribute the effect of IGF-I in the liver.


Biochemical and Biophysical Research Communications | 2012

IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway.

Anastasia-Evi Handayaningsih; Michiko Takahashi; Hidenori Fukuoka; Genzo Iguchi; Hitoshi Nishizawa; Masaaki Yamamoto; Kentaro Suda; Yutaka Takahashi

Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.


Growth Hormone & Igf Research | 2010

IGF-I stimulates reactive oxygen species (ROS) production and inhibits insulin-dependent glucose uptake via ROS in 3T3-L1 adipocytes

Hidenori Fukuoka; Keiji Iida; Hitoshi Nishizawa; Mari Imanaka; Ryoko Takeno; Genzo Iguchi; Michiko Takahashi; Yasuhiko Okimura; Hidesuke Kaji; Kazuo Chihara; Yutaka Takahashi

OBJECTIVE IGF-I is known to enhance insulin sensitivity in whole body mainly via the IGF-I receptors in muscles. However, the effect of IGF-I on the regulation of insulin sensitivity in the adipose tissue is yet unclear. Insulin sensitivity was found to be higher in the IGF-I receptor-deficient adipocytes than that in wild-type adipocytes, suggesting that IGF-I signaling induces insulin resistance in adipocytes. However, the underlying mechanism has not yet been elucidated. In addition, the effect of superphysiological levels of IGF-I, as is observed in patients with acromegaly, on insulin sensitivity remains unclear. DESIGN To clarify the role of IGF-I on insulin sensitivity in adipocytes, we determined insulin-induced glucose uptake and IRS-1 status in 3T3-L1 adipocytes treated with IGF-I. Since reactive oxygen species (ROS) are causally related to insulin resistance, we investigated the effect of IGF-I on ROS production to elucidate the molecular mechanism underlying insulin resistance. RESULTS Preincubation of the adipocytes with IGF-I attenuated insulin-dependent glucose uptake. Interestingly, we found that IGF-I significantly stimulated ROS production. Furthermore, preincubation of adipocytes with an antioxidant, N-acetyl-cysteine (NAC) restored the IGF-I-induced attenuation of insulin-dependent glucose uptake; this indicates that IGF-I induces insulin resistance via ROS. Serine phosphorylation of IRS-1 was strongly induced and the insulin-dependent tyrosine phosphorylation of IRS-1 was suppressed by preincubating the adipocytes with IGF-I. Further, NAC restored these changes induced by IGF-I on both serine and tyrosine phosphorylation of IRS-1. CONCLUSIONS These data indicate that IGF-I inhibited insulin activity in the 3T3-L1 adipocytes via ROS production, which affects IRS-1 phosphorylation status.


Scientific Reports | 2016

IGF-I induces senescence of hepatic stellate cells and limits fibrosis in a p53-dependent manner

Hitoshi Nishizawa; Genzo Iguchi; Hidenori Fukuoka; Michiko Takahashi; Kentaro Suda; Hironori Bando; Ryusaku Matsumoto; Kenichi Yoshida; Yukiko Odake; Wataru Ogawa; Yutaka Takahashi

Hepatic fibrosis in nonalcoholic steatohepatitis (NASH) and cirrhosis determines patient prognosis; however, effective treatment for fibrosis has not been established. Oxidative stress and inflammation activate hepatic stellate cells (HSCs) and promote fibrosis. In contrast, cellular senescence inhibits HSCs’ activity and limits fibrosis. The aim of this study was to explore the effect of IGF-I on NASH and cirrhotic models and to clarify the underlying mechanisms. We demonstrate that IGF-I significantly ameliorated steatosis, inflammation, and fibrosis in a NASH model, methionine-choline-deficient diet-fed db/db mice and ameliorated fibrosis in cirrhotic model, dimethylnitrosamine-treated mice. As the underlying mechanisms, IGF-I improved oxidative stress and mitochondrial function in the liver. In addition, IGF-I receptor was strongly expressed in HSCs and IGF-I induced cellular senescence in HSCs in vitro and in vivo. Furthermore, in mice lacking the key senescence regulator p53, IGF-I did not induce cellular senescence in HSCs or show any effects on fibrosis. Taken together, these results indicate that IGF-I induces senescence of HSCs, inactivates these cells and limits fibrosis in a p53-dependent manner and that IGF-I may be applied to treat NASH and cirrhosis.

Collaboration


Dive into the Hidenori Fukuoka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge