Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidenori Matsui is active.

Publication


Featured researches published by Hidenori Matsui.


Molecular Genetics and Genomics | 2004

Structure and expression of 12-oxophytodienoate reductase (subgroup I) genes in pea, and characterization of the oxidoreductase activities of their recombinant products

Hidenori Matsui; G Nakamura; Yasuhiro Ishiga; H Toshima; Yoshi Shige Inagaki; Kazuhiro Toyoda; Tomonori Shiraishi; Yuki Ichinose

Recently, we observed that expression of a pea gene (S64) encoding an oxophytodienoic acid reductase (OPR) was induced by a suppressor of pea defense responses, secreted by the pea pathogen Mycosphaerella pinodes. Because it is known that OPRs are usually encoded by families of homologous genes, we screened for genomic and cDNA clones encoding members of this putative OPR family in pea. We isolated five members of the OPR gene family from a pea genomic DNA library, and amplified six cDNA clones, including S64, by RT-PCR (reverse transcriptase-PCR). Sequencing analysis revealed that S64 corresponds to PsOPR2, and the amino acid sequences of the predicted products of the six OPR-like genes shared more than 80% identity with each other. Based on their sequence similarity, all these OPR-like genes code for OPRs of subgroup I, i.e., enzymes which are not required for jasmonic acid biosynthesis. However, the genes varied in their exon/intron organization and in their promoter sequences. To investigate the expression of each individual OPR-like gene, RT-PCR was performed using gene-specific primers. The results indicated that the OPR-like gene most strongly induced by the inoculation of pea plants with a compatible pathogen and by treatment with the suppressor from M. pinodes was PsOPR2. Furthermore, the ability of the six recombinant OPR-like proteins to reduce a model substrate, 2-cyclohexen-1-one (2-CyHE), was investigated. The results indicated that PsOPR1, 4 and 6 display robust activity, and PsOPR2 has a most remarkable ability to reduce 2-CyHE, whereas PsOPR3 has little and PsOPR5 does not reduce this compound. Thus, the six OPR-like proteins can be classified into four types. Interestingly, the gene structures, expression profiles, and enzymatic activities used to classify each member of the pea OPR-like gene family are clearly correlated, indicating that each member of this OPR-like family has a distinct function.


The EMBO Journal | 2016

The Arabidopsis CERK1‐associated kinase PBL27 connects chitin perception to MAPK activation

Kenta Yamada; Koji Yamaguchi; Tomomi Shirakawa; Hirofumi Nakagami; Akira Mine; Kazuya Ishikawa; Masayuki Fujiwara; Mari Narusaka; Yoshihiro Narusaka; Kazuya Ichimura; Yuka Kobayashi; Hidenori Matsui; Yuko Nomura; Mika Nomoto; Yasuomi Tada; Yoichiro Fukao; Tamo Fukamizo; Kenichi Tsuda; Ken Shirasu; Naoto Shibuya; Tsutomu Kawasaki

Perception of microbe‐associated molecular patterns by host cell surface pattern recognition receptors (PRRs) triggers the intracellular activation of mitogen‐activated protein kinase (MAPK) cascades. However, it is not known how PRRs transmit immune signals to MAPK cascades in plants. Here, we identify a complete phospho‐signaling transduction pathway from PRR‐mediated pathogen recognition to MAPK activation in plants. We found that the receptor‐like cytoplasmic kinase PBL27 connects the chitin receptor complex CERK1‐LYK5 and a MAPK cascade. PBL27 interacts with both CERK1 and the MAPK kinase kinase MAPKKK5 at the plasma membrane. Knockout mutants of MAPKKK5 compromise chitin‐induced MAPK activation and disease resistance to Alternaria brassicicola. PBL27 phosphorylates MAPKKK5 in vitro, which is enhanced by phosphorylation of PBL27 by CERK1. The chitin perception induces disassociation between PBL27 and MAPKKK5 in vivo. Furthermore, genetic evidence suggests that phosphorylation of MAPKKK5 by PBL27 is essential for chitin‐induced MAPK activation in plants. These data indicate that PBL27 is the MAPKKK kinase that provides the missing link between the cell surface chitin receptor and the intracellular MAPK cascade in plants.


Plant and Cell Physiology | 2010

Pdk1 Kinase Regulates Basal Disease Resistance Through the OsOxi1-OsPti1a Phosphorylation Cascade in Rice

Hidenori Matsui; Akio Miyao; Akira Takahashi; Hirohiko Hirochika

The AGC kinase OsOxi1, which has been isolated as an interactor with OsPti1a, positively regulates basal disease resistance in rice. In eukaryotes, AGC kinase family proteins are regulated by 3-phosphoinositide-dependent protein kinase 1 (Pdk1). In Arabidopsis, AtPdk1 directly interacts with phosphatidic acid, which functions as a second messenger in both biotic and abiotic stress responses. However, the functions of Pdk1 are poorly understood in plants. We show here that OsPdk1 acts upstream of the OsOxi1-OsPti1a signal cascade in disease resistance in rice. OsPdk1 interacts with OsOxi1 and phosphorylates the Ser283 residue of OsOxi1 in vitro. To investigate whether OsPdk1 is involved in immunity that is triggered by microbial-associated molecular patterns, we analyzed the phosphorylation status of OsPdk1 in response to chitin elicitor. Like OsOxi1, OsPdk1 is rapidly phosphorylated in response to chitin elicitor, suggesting that OsPdk1 participates in signal transduction through pathogen recognition. The overexpression of OsPdk1 enhanced basal resistance against a blast fungus, Magnaporthe oryzae, and a bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo). Taken together, these results suggest that OsPdk1 positively regulates basal disease resistance through the OsOxi1-OsPti1a phosphorylation cascade in rice.


Frontiers in Plant Science | 2015

Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants.

Mayumi Egusa; Hidenori Matsui; Takeshi Urakami; Sanami Okuda; Shinsuke Ifuku; Hirofumi Nakagami; Hironori Kaminaka

Chitin, an N-acetyl-D-glucosamine polymer, is a component of fungal cell walls and a microbe/pathogen-associated molecular pattern that elicits plant defense responses. As polymeric chitin is difficult to handle due to its insolubility in water, many studies on chitin-induced immune responses have used water-soluble low-molecular weight chitin instead. Thus, it is unclear if polymeric chitin can induce resistance. Here, we examined the elicitor activity of chitin nanofiber (CNF) of submicron thickness prepared from polymeric chitin. CNF showed a high dispersing ability in water and induced both reactive oxygen species (ROS) production and chitin-induced defense-related gene expression in Arabidopsis thaliana seedlings. The Arabidopsis chitin elicitor receptor kinase 1 (Atcerk1) mutant, which is impaired in chitin perception, also failed to respond to CNF. CNF exposure triggered ROS generation in suspension-cultured cells from Oryza sativa. Furthermore, pre-treatment of Arabidopsis leaves with CNF effectively reduced pathogen infection by both the fungus Alternaria brassicicola and the bacterium Pseudomonas syringae pv. tomato DC3000. These results demonstrate that CNF has elicitor activity and will help define the role of polymeric chitin in plant immune responses.


Plant Physiology | 2014

Plasma Membrane Localization Is Essential for Oryza sativa Pto-Interacting Protein 1a-Mediated Negative Regulation of Immune Signaling in Rice

Hidenori Matsui; Masayuki Fujiwara; Satoshi Hamada; Ko Shimamoto; Yuko Nomura; Hirofumi Nakagami; Akira Takahashi; Hirohiko Hirochika

Appropriate complex formation at the plasma membrane is indispensable for a negative regulator of immune signaling in rice. Oryza sativa Pto-interacting protein 1a (OsPti1a), an ortholog of tomato (Solanum lycopersicum) SlPti1, functions as a negative regulator of innate immunity in rice (Oryza sativa). In ospti1a mutants, the activation of immune responses, including hypersensitive response-like cell death, is caused by loss of the OsPti1a protein; however, it is as yet unclear how OsPti1a suppresses immune responses. Here, we report that OsPti1a localizes to detergent-resistant membrane fractions of the plasma membrane through lipid modification of the protein’s amino terminus, which is highly conserved among Pti1 orthologs in several plant species. Importantly, mislocalization of OsPti1a after deletion of its amino terminus reduced its ability to complement the mutant phenotypes, including hypersensitive response-like cell death. Furthermore, complex formation of OsPti1a depends on its amino terminus-mediated membrane localization. Liquid chromatography-tandem mass spectrometry analysis of OsPti1a complex-interacting proteins identified several defense-related proteins. Collectively, these findings indicate that appropriate complex formation by OsPti1a at the plasma membrane is required for the negative regulation of plant immune responses in rice.


PLOS Genetics | 2017

The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions

Hidenori Matsui; Yuko Nomura; Mayumi Egusa; Takahiro Hamada; Gang Su Hyon; Hironori Kaminaka; Yuichiro Watanabe; Takashi Ueda; Marco Trujillo; Ken Shirasu; Hirofumi Nakagami

The induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms. Mechanisms by which plants solve this conundrum remain described. Here, we identify PLANT SMY2-TYPE ILE-GYF DOMAIN-CONTAINING PROTEIN 1 (PSIG1) and show that PSIG1 helps to restrict cell death induction during pathogen infection. Inactivation of PSIG1 does not result in spontaneous lesions, and enhanced cell death in psig1 mutants is independent of salicylic acid (SA) biosynthesis or reactive oxygen species (ROS) production. Moreover, PSIG1 interacts with SMG7, which plays a role in nonsense-mediated RNA decay (NMD), and the smg7-4 mutant allele mimics the cell death phenotype of the psig1 mutants. Intriguingly, the psig1 mutants display enhanced susceptibility to the hemi-biotrophic bacterial pathogen. These findings point to the existence and importance of the SA- and ROS-independent cell death constraining mechanism as a part of the plant immune system.


Plant Signaling & Behavior | 2015

Rice immune regulator, OsPti1a, is specifically phosphorylated at the plasma membrane

Hidenori Matsui; Akira Takahashi; Hirohiko Hirochika

OsPti1a (Pto-interacting protein 1a) has important roles in the regulation of immune responses in rice. Phosphorylation of a conserved threonine in OsPti1a is necessary to activate defense responses; however, the regulatory mechanism of OsPti1a-mediated immune responses is still obscure. Recently, we revealed that OsPti1a forms protein complex(es) at the plasma membrane and this localization is required for its function. Here, we show that membrane-localized OsPti1a was selectively phosphorylated. Additionally, phosphorylation was not required for the localization of OsPti1a at the membrane. These results suggest that OsPti1a protein is selectively regulated by its phosphorylation after OsPti1a localizes to the plasma membrane.


New Phytologist | 2018

Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon

Yusuke Kouzai; Mamiko Kimura; Megumi Watanabe; Kazuki Kusunoki; Daiki Osaka; Tomoko Suzuki; Hidenori Matsui; Mikihiro Yamamoto; Yuki Ichinose; Kazuhiro Toyoda; Takakazu Matsuura; Izumi C. Mori; Takashi Hirayama; Eiichi Minami; Yoko Nishizawa; Komaki Inoue; Yoshihiko Onda; Keiichi Mochida; Yoshiteru Noutoshi

Summary Rhizoctonia solani is a soil‐borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)‐dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone‐induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA‐deficient NahG transgenic rice and the sheath blight‐resistant B. distachyon accessions, Bd3‐1 and Gaz‐4, which activate SA‐dependent signaling on inoculation. Our findings suggest a hemi‐biotrophic nature of R. solani, which can be targeted by SA‐dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.


Molecular Genetics and Genomics | 2018

MexEF-OprN multidrug efflux pump transporter negatively controls N-acyl-homoserine lactone accumulation in pseudomonas syringae pv. Tabaci 6605

Takahiro Sawada; Miho Eguchi; Seiya Asaki; Ryota Kashiwagi; Kousuke Shimomura; Fumiko Taguchi; Hidenori Matsui; Mikihiro Yamamoto; Yoshiteru Noutoshi; Kazuhiro Toyoda; Yuki Ichinose

Our previous studies revealed that flagellar-motility-defective mutants such as ∆fliC of Pseudomonas syringae pv. tabaci 6605 (Pta6605) have remarkably reduced production of N-acyl-homoserine lactones (AHL), quorum-sensing molecules. To investigate the reason of loss of AHL production in ∆fliC mutant, we carried out transposon mutagenesis. Among approximately 14,000 transconjugants, we found 11 AHL production-recovered (APR) strains. In these APR strains, a transposon was inserted into either mexE or mexF, genes encoding for the multidrug efflux pump transporter MexEF-OprN, and mexT, a gene encoding a putative transcriptional activator for mexEF-oprN. These results suggest that MexEF-OprN is a negative regulator of AHL production. To confirm the negative effect of MexEF-OprN on AHL production, loss- and gain-of-function experiments for mexEF-oprN were carried out. The ∆fliC∆mexF and ∆fliC∆mexT double mutant strains recovered AHL production, whereas the mexT overexpressing strain abolished AHL production, although the psyI, a gene encoding AHL synthase, is transcribed as wild type. Introduction of a mexF or mexT mutation into another flagellar-motility- and AHL production-defective mutant strain, ∆motCD, also recovered the ability to produce AHL. Furthermore, introduction of the mexF mutation into other AHL production-defective mutant strains such as ∆gacA and ∆aefR also recovered AHL production but not to the ∆psyI mutant. These results indicate that MexEF-OprN is a decisive negative determinant of AHL production and accumulation.


Microbiological Research | 2018

Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis

Geofrey Sing’ombe Ombiro; Taku Sawai; Yoshiteru Noutoshi; Yuta Nishina; Hidenori Matsui; Mikihiro Yamamoto; Kazuhiro Toyoda; Yuki Ichinose

Plant pathogenic bacteria cause huge yield losses in crops globally. Therefore, finding effective bactericides to these pathogens is an immediate challenge. In this study, we sought compounds that specifically inhibit the growth of Ralstonia solanacearum. As a result, we identified one promising compound, 1-(4-bromophenyl)-6-methoxy-2,3,4,9-tetrahydro-1H-β-carboline, which inhibited the growth of R. solanacearum (Rs1002) from a pilot library of 376 chemicals provided from RIKEN. We further obtained its structural analogues and assessed their ability to inhibit Rs1002 growth. Then we identified five compounds, named ralhibitins A to E, that specifically inhibit growth of Rs1002 at >5 μg/ml final concentration. The most effective compounds, ralhibitins A, C, and E completely inhibited the growth of Rs1002 at 1.25 μg/ml. In addition, ralhibitins A to E inhibited growth of Xanthomonas oryzae pv. oryzae but not the other bacteria tested at a final concentration of 10 μg/ml. Whereas, ralhibitin E, besides inhibiting R. solanacearum and X. oryzae pv. oryzae, completely inhibited the growth of X. campestris pv. campestris and the Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis at 10 μg/ml. Growth inhibition by these compounds was stable at pH 6-9 and after autoclaving. Because Rs1002 grew in the culture medium in which ralhibitins were incubated with the ralhibitin-insensitive bacteria, the unaffected bacteria may be able to inactivate the inhibitory effect of ralhibitins. These results suggest that ralhibitins might be potential lead compounds for the specific control of phytopathogenic bacteria.

Collaboration


Dive into the Hidenori Matsui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Takahashi

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge