Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideo Hagihara is active.

Publication


Featured researches published by Hideo Hagihara.


Journal of Visualized Experiments | 2009

Dissection of Hippocampal Dentate Gyrus from Adult Mouse

Hideo Hagihara; Keiko Toyama; Nobuyuki Yamasaki; Tsuyoshi Miyakawa

The hippocampus is one of the most widely studied areas in the brain because of its important functional role in memory processing and learning, its remarkable neuronal cell plasticity, and its involvement in epilepsy, neurodegenerative diseases, and psychiatric disorders. The hippocampus is composed of distinct regions; the dentate gyrus, which comprises mainly granule neurons, and Ammons horn, which comprises mainly pyramidal neurons, and the two regions are connected by both anatomic and functional circuits. Many different mRNAs and proteins are selectively expressed in the dentate gyrus, and the dentate gyrus is a site of adult neurogenesis; that is, new neurons are continually generated in the adult dentate gyrus. To investigate mRNA and protein expression specific to the dentate gyrus, laser capture microdissection is often used. This method has some limitations, however, such as the need for special apparatuses and complicated handling procedures. In this video-recorded protocol, we demonstrate a dissection technique for removing the dentate gyrus from adult mouse under a stereomicroscope. Dentate gyrus samples prepared using this technique are suitable for any assay, including transcriptomic, proteomic, and cell biology analyses. We confirmed that the dissected tissue is dentate gyrus by conducting real-time PCR of dentate gyrus-specific genes, tryptophan 2,3-dioxygenase (TDO2) and desmoplakin (Dsp), and Ammons horn enriched genes, Meis-related gene 1b (Mrg1b) and TYRO3 protein tyrosine kinase 3 (Tyro3). The mRNA expressions of TDO2 and Dsp in the dentate gyrus samples were detected at obviously higher levels, whereas Mrg1b and Tyro3 were lower levels, than those in the Ammons horn samples. To demonstrate the advantage of this method, we performed DNA microarray analysis using samples of whole hippocampus and dentate gyrus. The mRNA expression of TDO2 and Dsp, which are expressed selectively in the dentate gyrus, in the whole hippocampus of alpha-CaMKII+/- mice, exhibited 0.037 and 0.10-fold changes compared to that of wild-type mice, respectively. In the isolated dentate gyrus, however, these expressions exhibited 0.011 and 0.021-fold changes compared to that of wild-type mice, demonstrating that gene expression changes in dentate gyrus can be detected with greater sensitivity. Taken together, this convenient and accurate dissection technique can be reliably used for studies focused on the dentate gyrus.


Neuropsychopharmacology | 2013

Deficiency of Schnurri-2, an MHC Enhancer Binding Protein, Induces Mild Chronic Inflammation in the Brain and Confers Molecular, Neuronal, and Behavioral Phenotypes Related to Schizophrenia

Keizo Takao; Katsunori Kobayashi; Hideo Hagihara; Koji Ohira; Hirotaka Shoji; Satoko Hattori; Hisatsugu Koshimizu; Juzoh Umemori; Keiko Toyama; Hironori K. Nakamura; Mahomi Kuroiwa; Jun Maeda; Kimie Atsuzawa; Kayoko Esaki; Shun Yamaguchi; Shigeki Furuya; Tsuyoshi Takagi; Noah M. Walton; Nobuhiro Hayashi; Hidenori Suzuki; Makoto Higuchi; Nobuteru Usuda; Tetsuya Suhara; Akinori Nishi; Mitsuyuki Matsumoto; Shunsuke Ishii; Tsuyoshi Miyakawa

Schnurri-2 (Shn-2), an nuclear factor-κB site-binding protein, tightly binds to the enhancers of major histocompatibility complex class I genes and inflammatory cytokines, which have been shown to harbor common variant single-nucleotide polymorphisms associated with schizophrenia. Although genes related to immunity are implicated in schizophrenia, there has been no study showing that their mutation or knockout (KO) results in schizophrenia. Here, we show that Shn-2 KO mice have behavioral abnormalities that resemble those of schizophrenics. The mutant brain demonstrated multiple schizophrenia-related phenotypes, including transcriptome/proteome changes similar to those of postmortem schizophrenia patients, decreased parvalbumin and GAD67 levels, increased theta power on electroencephalograms, and a thinner cortex. Dentate gyrus granule cells failed to mature in mutants, a previously proposed endophenotype of schizophrenia. Shn-2 KO mice also exhibited mild chronic inflammation of the brain, as evidenced by increased inflammation markers (including GFAP and NADH/NADPH oxidase p22 phox), and genome-wide gene expression patterns similar to various inflammatory conditions. Chronic administration of anti-inflammatory drugs reduced hippocampal GFAP expression, and reversed deficits in working memory and nest-building behaviors in Shn-2 KO mice. These results suggest that genetically induced changes in immune system can be a predisposing factor in schizophrenia.


Neural Plasticity | 2013

Immature dentate gyrus: an endophenotype of neuropsychiatric disorders.

Hideo Hagihara; Keizo Takao; Noah M. Walton; Mitsuyuki Matsumoto; Tsuyoshi Miyakawa

Adequate maturation of neurons and their integration into the hippocampal circuit is crucial for normal cognitive function and emotional behavior, and disruption of this process could cause disturbances in mental health. Previous reports have shown that mice heterozygous for a null mutation in α-CaMKII, which encodes a key synaptic plasticity molecule, display abnormal behaviors related to schizophrenia and other psychiatric disorders. In these mutants, almost all neurons in the dentate gyrus are arrested at a pseudoimmature state at the molecular and electrophysiological levels, a phenomenon defined as “immature dentate gyrus (iDG).” To date, the iDG phenotype and shared behavioral abnormalities (including working memory deficit and hyperlocomotor activity) have been discovered in Schnurri-2 knockout, mutant SNAP-25 knock-in, and forebrain-specific calcineurin knockout mice. In addition, both chronic fluoxetine treatment and pilocarpine-induced seizures reverse the neuronal maturation, resulting in the iDG phenotype in wild-type mice. Importantly, an iDG-like phenomenon was observed in post-mortem analysis of brains from patients with schizophrenia/bipolar disorder. Based on these observations, we proposed that the iDG is a potential endophenotype shared by certain types of neuropsychiatric disorders. This review summarizes recent data describing this phenotype and discusses the datas potential implication in elucidating the pathophysiology of neuropsychiatric disorders.


Bipolar Disorders | 2013

The immature dentate gyrus represents a shared phenotype of mouse models of epilepsy and psychiatric disease.

Rick Shin; Katsunori Kobayashi; Hideo Hagihara; Jeffrey H. Kogan; Shinichi Miyake; Katsunori Tajinda; Noah M. Walton; Adam K. Gross; Carrie L. Heusner; Qian Chen; Kouichi Tamura; Tsuyoshi Miyakawa; Mitsuyuki Matsumoto

There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases.


Journal of Visualized Experiments | 2012

T-maze Forced Alternation and Left-right Discrimination Tasks for Assessing Working and Reference Memory in Mice

Hirotaka Shoji; Hideo Hagihara; Keizo Takao; Satoko Hattori; Tsuyoshi Miyakawa

Forced alternation and left-right discrimination tasks using the T-maze have been widely used to assess working and reference memory, respectively, in rodents. In our laboratory, we evaluated the two types of memory in more than 30 strains of genetically engineered mice using the automated version of this apparatus. Here, we present the modified T-maze apparatus operated by a computer with a video-tracking system and our protocols in a movie format. The T-maze apparatus consists of runways partitioned off by sliding doors that can automatically open downward, each with a start box, a T-shaped alley, two boxes with automatic pellet dispensers at one side of the box, and two L-shaped alleys. Each L-shaped alley is connected to the start box so that mice can return to the start box, which excludes the effects of experimenter handling on mouse behavior. This apparatus also has an advantage that in vivo microdialysis, in vivo electrophysiology, and optogenetics techniques can be performed during T-maze performance because the doors are designed to go down into the floor. In this movie article, we describe T-maze tasks using the automated apparatus and the T-maze performance of α-CaMKII+/- mice, which are reported to show working memory deficits in the eight-arm radial maze task. Our data indicated that α-CaMKII+/- mice showed a working memory deficit, but no impairment of reference memory, and are consistent with previous findings using the eight-arm radial maze task, which supports the validity of our protocol. In addition, our data indicate that mutants tended to exhibit reversal learning deficits, suggesting that α-CaMKII deficiency causes reduced behavioral flexibility. Thus, the T-maze test using the modified automatic apparatus is useful for assessing working and reference memory and behavioral flexibility in mice.


Molecular Brain | 2014

Transcriptomic evidence for immaturity of the prefrontal cortex in patients with schizophrenia.

Hideo Hagihara; Koji Ohira; Keizo Takao; Tsuyoshi Miyakawa

BackgroundSchizophrenia, a severe psychiatric disorder, has a lifetime prevalence of 1%. The exact mechanisms underlying this disorder remain unknown, though theories abound. Recent studies suggest that particular cell types and biological processes in the schizophrenic cortex have a pseudo-immature status in which the molecular properties partially resemble those in the normal immature brain. However, genome-wide gene expression patterns in the brains of patients with schizophrenia and those of normal infants have not been directly compared. Here, we show that the gene expression patterns in the schizophrenic prefrontal cortex (PFC) resemble those in the juvenile PFC.ResultsWe conducted a gene expression meta-analysis in which, using microarray data derived from different studies, altered expression patterns in the dorsolateral PFC (DLFC) of patients with schizophrenia were compared with those in the DLFC of developing normal human brains, revealing a striking similarity. The results were replicated in a second DLFC data set and a medial PFC (MFC) data set. We also found that about half of the genes representing the transcriptomic immaturity of the schizophrenic PFC were developmentally regulated in fast-spiking interneurons, astrocytes, and oligodendrocytes. Furthermore, to test whether medications, which often confound the results of postmortem analyses, affect on the juvenile-like gene expressions in the schizophrenic PFC, we compared the gene expression patterns showing transcriptomic immaturity in the schizophrenic PFC with those in the PFC of rodents treated with antipsychotic drugs. The results showed no apparent similarities between the two conditions, suggesting that the juvenile-like gene expression patterns observed in the schizophrenic PFC could not be accounted for by medication effects. Moreover, the developing human PFC showed a gene expression pattern similar to that of the PFC of naive Schnurri-2 knockout mice, an animal model of schizophrenia with good face and construct validity. This result also supports the idea that the transcriptomic immaturity of the schizophrenic PFC is not due to medication effects.ConclusionsCollectively, our results provide evidence that pseudo-immaturity of the PFC resembling juvenile PFC may be an endophenotype of schizophrenia.


Frontiers in Neuroscience | 2011

Expression of the AMPA Receptor Subunits GluR1 and GluR2 is Associated with Granule Cell Maturation in the Dentate Gyrus

Hideo Hagihara; Koji Ohira; Keiko Toyama; Tsuyoshi Miyakawa

The dentate gyrus produces new granule neurons throughout adulthood in mammals from rodents to humans. During granule cell maturation, defined markers are expressed in a highly regulated sequential process, which is necessary for directed neuronal differentiation. In the present study, we show that α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) receptor subunits GluR1 and GluR2 are expressed in differentiated granule cells, but not in stem cells, in neonatal, and adult dentate gyrus. Using markers for neural progenitors, immature and mature granule cells, we found that GluR1 and GluR2 were expressed mainly in mature cells and in some immature cells. A time-course analysis of 5-bromo-2′-deoxyuridine staining revealed that granule cells express GluR1 around 3 weeks after being generated. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, a putative animal model of schizophrenia and bipolar disorder in which dentate gyrus granule cells fail to mature normally, GluR1 and GluR2 immunoreactivities were substantially downregulated in the dentate gyrus granule cells. In the granule cells of mutant mice, the expression of both presynaptic and postsynaptic markers was decreased, suggesting that GluR1 and GluR2 are also associated with synaptic maturation. Moreover, GluR1 and GluR2 were also expressed in mature granule cells of the neonatal dentate gyrus. Taken together, these findings indicate that GluR1 and GluR2 expression closely correlates with the neuronal maturation state, and that GluR1 and GluR2 are useful markers for mature granule cells in the dentate gyrus.


Frontiers in Integrative Neuroscience | 2013

In vivo evaluation of cellular activity in αCaMKII heterozygous knockout mice using manganese-enhanced magnetic resonance imaging (MEMRI)

Satoko Hattori; Hideo Hagihara; Koji Ohira; Ichio Aoki; Tsuneo Saga; Tetsuya Suhara; Makoto Higuchi; Tsuyoshi Miyakawa

The alpha-calcium/calmodulin-dependent protein kinase II (αCaMKII) is a serine/threonine protein kinase predominantly expressed in the forebrain, especially in the postsynaptic density, and plays a key role in synaptic plasticity, learning and memory. αCaMKII heterozygous knockout (HKO) mice exhibit abnormal emotional and aggressive behaviors and cognitive impairments and have been proposed as an animal model of psychiatric illness. Our previous studies have shown that the expression of immediate early genes (IEGs) after exposure to electric foot shock or after performing a working memory task is decreased in the hippocampus, central amygdala, and medial prefrontal cortex of mutant mice. These changes could be caused by disturbances in neuronal signal transduction; however, it is still unclear whether neuronal activity is reduced in these regions. In this study, we performed in vivo manganese-enhanced magnetic resonance imaging (MEMRI) to assess the regional cellular activity in the brains of αCaMKII HKO mice. The signal intensity of MEMRI 24 h after systemic MnCl2 administration reflects functional increases of Mn2+ influx into neurons and glia via transport mechanisms, such as voltage-gated and/or ligand-gated Ca2+ channels. αCaMKII HKO mice demonstrated a low signal intensity of MEMRI in the dentate gyrus (DG), in which almost all neurons were at immature status at the molecular, morphological, and electrophysiological levels. In contrast, analysis of the signal intensity in these mutant mice revealed increased activity in the CA1 area of the hippocampus, a region crucial for cognitive function. The signal intensity was also increased in the bed nucleus of the stria terminalis (BNST), which is involved in anxiety. These changes in the mutant mice may be responsible for the observed dysregulated behaviors, such as cognitive deficit and abnormal anxiety-like behavior, which are similar to symptoms seen in human psychiatric disorders.


Cell Reports | 2016

Circadian Gene Circuitry Predicts Hyperactive Behavior in a Mood Disorder Mouse Model

Hideo Hagihara; Tomoyasu Horikawa; Hironori K. Nakamura; Juzoh Umemori; Hirotaka Shoji; Yukiyasu Kamitani; Tsuyoshi Miyakawa

Bipolar disorder, also known as manic-depressive illness, causes swings in mood and activity levels at irregular intervals. Such changes are difficult to predict, and their molecular basis remains unknown. Here, we use infradian (longer than a day) cyclic activity levels in αCaMKII (Camk2a) mutant mice as a proxy for such mood-associated changes. We report that gene-expression patterns in the hippocampal dentate gyrus could retrospectively predict whether the mice were in a state of high or low locomotor activity (LA). Expression of a subset of circadian genes, as well as levels of cAMP and pCREB, possible upstream regulators of circadian genes, were correlated with LA states, suggesting that the intrinsic molecular circuitry changes concomitant with infradian oscillatory LA. Taken together, these findings shed light onto the molecular basis of how irregular biological rhythms and behavior are controlled by the brain.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Reply to Warren et al. and Shay et al.: Commonalities across species do exist and are potentially important.

Keizo Takao; Hideo Hagihara; Tsuyoshi Miyakawa

In comparisons of human burn conditions and mouse models of infection, we found that 1,608 genes, roughly 12% of the genes that changed in humans, changed in the same direction in mice, as indicated by Warren et al. (1). However, we argue that this fact does not indicate that mice are a poor animal model for the following reasons. First, at present, we do not understand 12% of the entire picture of a complex biological phenomenon such as inflammation, do we? If not, the shared changes of 1,608 genes may not be negligible and would be useful for understanding the mechanisms shared by humans and mice. Second, these genes involved 185 commonly and significantly changed molecular pathways/biogroups (dataset S1 in ref. 2), which could serve as potential targets for preclinical studies. Third, the statistical significance represented by the overlap P value estimated using NextBio characterizes not only the direction of the changes but also the extent (ranking) of the fold-changes (FCs). The P value (3.4 × 10−35) indicates an extraordinarily significant overlap, which motivated the use of the word “greatly” in the title of our paper. Furthermore, the similarity of gene expression patterns between human and mice was possibly underestimated. As Shay et al. (3) and we (2) point out, the datasets compared in Seok et al. have not been optimized for comparisons regarding matching of time courses/frames between human and mouse datasets, treatment effects, heterogeneity in human datasets, etc. As suggested by Shay et al., with more optimized datasets, the extent of similarity between human diseases and mouse models would become even stronger.

Collaboration


Dive into the Hideo Hagihara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Ohira

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar

Keiko Toyama

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar

Hirotaka Shoji

Fujita Health University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuhiro Hayashi

Tokyo Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge