Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideo Ohkita is active.

Publication


Featured researches published by Hideo Ohkita.


Journal of the American Chemical Society | 2008

Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy.

Hideo Ohkita; Steffan Cook; Yeni Astuti; Warren Duffy; Steve Tierney; Weimin Zhang; Martin Heeney; Iain McCulloch; Jenny Nelson; and Donal D. C. Bradley; James R. Durrant

We report herein a comparison of the photophysics of a series of polythiophenes with ionization potentials ranging from 4.8 to 5.6 eV as pristine films and when blended with 5 wt % 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]C61 (PCBM). Three polymers are observed to give amorphous films, attributed to a nonplanar geometry of their backbone while the other five polymers, including poly(3-hexylthiophene), give more crystalline films. Optical excitation of the pristine films of the amorphous polymers is observed by transient absorption spectroscopy to give rise to polymer triplet formation. For the more crystalline pristine polymers, no triplet formation is observed, but rather a short-lived (approximately 100 ns), broad photoinduced absorption feature assigned to polymer polarons. For all polymers, the addition of 5 wt % PCBM resulted in 70-90% quenching of polymer photoluminescence (PL), indicative of efficient quenching of polythiophene excitons. Remarkably, despite this efficient exciton quenching, the yield of dissociated polymer+ and PCBM- polarons, assayed by the appearance of a long-lived, power-law decay phase assigned to bimolecular recombination of these polarons, was observed to vary by over 2 orders of magnitude depending upon the polymer employed. In addition to this power-law decay phase, the blend films exhibited short-lived decays assigned, for the amorphous polymers, to neutral triplet states generated by geminate recombination of bound radical pairs and, for the more crystalline polymers, to the direct observation of the geminate recombination of these bound radical pairs to ground. These observations are discussed in terms of a two-step kinetic model for charge generation in polythiophene/PCBM blend films analogous to that reported to explain the observation of exciplex-like emission in poly(p-phenylenevinylene)-based blend films. Remarkably, we find an excellent correlation between the free energy difference for charge separation (deltaG(CS)rel) and yield of the long-lived charge generation, with efficient charge generation requiring a much larger deltaG(CS)rel than that required to achieve efficient PL quenching. We suggest that this observation is consistent with a model where the excess thermal energy of the initially formed polaron pairs is necessary to overcome their Coulombic binding energy. This observation has important implications for synthetic strategies to optimize organic solar cell performance, as it implies that, at least devices based on polythiophene/PCBM blend films, a large deltaG(CS)rel (or LUMO level offset) is required to achieve efficient charge dissociation.


Journal of the American Chemical Society | 2009

Near-IR Femtosecond Transient Absorption Spectroscopy of Ultrafast Polaron and Triplet Exciton Formation in Polythiophene Films with Different Regioregularities

Jiamo Guo; Hideo Ohkita; Hiroaki Benten; Shinzaburo Ito

The formation dynamics of polaron pairs, polarons, and triplet excitons in regiorandom and regioregular poly(3-hexylthiophene) (RRa-P3HT and RR-P3HT) films was comprehensively studied by transient absorption spectroscopy over the wide wavelength region from 500 to 1650 nm under various excitation intensities. In both RRa-P3HT and RR-P3HT films, polaron pairs were generated not from relaxed singlet exciton states but from hot excitons on a time scale of <100 fs and decayed monomolecularly by geminate recombination. In RRa-P3HT films, triplet excitons were rapidly generated on a picosecond time scale from higher exciton states produced by the singlet exciton-exciton annihilation as well as from the lowest singlet exciton states by the normal intersystem crossing. In RR-P3HT films, no triplet excitons were observed; polarons were also generated not from relaxed singlet exciton states but from hot excitons in competition with the formation of polaron pairs. The polarons formed in RR-P3HT can freely migrate and mainly recombine with other polarons bimolecularly in the nanosecond time domain. The ultrafast formation of triplet excitons can be explained by the singlet exciton fission into two triplets, and the ultrafast formation of polaron pairs and polarons can be explained on the basis of the hot-exciton dissociation model where the excess thermal energy of the initially formed hot excitons is necessary to overcome their Coulombic binding energy. The remarkably different formation dynamics in P3HTs with different regioregularities is discussed in terms of the film morphology of conjugated polymers.


Energy and Environmental Science | 2014

Highly efficient charge-carrier generation and collection in polymer/polymer blend solar cells with a power conversion efficiency of 5.7%

Daisuke Mori; Hiroaki Benten; Izumi Okada; Hideo Ohkita; Shinzaburo Ito

A polymer/polymer blend solar cell with an external quantum efficiency approaching 60% and the best power conversion efficiency of 5.73% is fabricated. The efficient charge-carrier generation and collection, comparable to those of polymer/fullerene solar cells, are found to be the main reasons for the superior device performance.


ACS Applied Materials & Interfaces | 2009

Improvement of the Light-Harvesting Efficiency in Polymer/Fullerene Bulk Heterojunction Solar Cells by Interfacial Dye Modification

Satoshi Honda; Takahiro Nogami; Hideo Ohkita; Hiroaki Benten; Shinzaburo Ito

Enhancement of the light-harvesting efficiency in poly(3-hexylthiophene)/fullerene derivative (P3HT/PCBM) bulk heterojunction solar cells has been demonstrated by the introduction of near-infrared phthalocyanine molecules as the third component at the P3HT/PCBM interface. The introduction of silicon phthalocyanine derivative (SiPc) increased the short-circuit current density and hence improved the overall power conversion efficiency by 20%, compared to the P3HT/PCBM control device. For P3HT/PCBM/SiPc devices, two distinct external quantum efficiency (EQE) peaks were observed at wavelengths for the absorption bands of SiPc as well as P3HT before and after thermal annealing, suggesting that SiPc molecules are located at the P3HT/PCBM interface because of crystallization of the P3HT and PCBM domains. Furthermore, the EQE for the device increased even at wavelengths for the absorption band of P3HT by the introduction of SiPc molecules. This indicates that P3HT excitons can be dissociated into charge carriers more efficiently in the presence of SiPc molecules at the P3HT/PCBM interface by energy transfer from P3HT to SiPc molecules. These findings suggest that there are two origins for the increase in the photocurrent by the introduction of SiPc; SiPc molecules serve not only as a light-harvesting photosensitizer but also as an energy funnel for P3HT excitons at the P3HT/PCBM interface.


Nature Communications | 2015

High-efficiency polymer solar cells with small photon energy loss

Kazuaki Kawashima; Yasunari Tamai; Hideo Ohkita; Itaru Osaka; Kazuo Takimiya

A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7–1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage.


Chemical Communications | 2010

Multi-colored dye sensitization of polymer/fullerene bulk heterojunction solar cells

Satoshi Honda; Hideo Ohkita; Hiroaki Benten; Shinzaburo Ito

Multi-colored dye-sensitized polymer/fullerene solar cells with two different near-IR dyes, silicon phthalocyanine bis(trihexylsilyl oxide) (SiPc) and silicon naphthalocyanine bis(trihexylsilyl oxide) (SiNc), enhanced power conversion efficiency up to 4.3%, compared to that of the individual ternary blend solar cells with a single dye under AM1.5G illumination.


Advanced Materials | 2016

Photovoltaic Performance of Perovskite Solar Cells with Different Grain Sizes

Hyung Do Kim; Hideo Ohkita; Hiroaki Benten; Shinzaburo Ito

Perovskite solar cells exhibit improved photovoltaic parameters with increasing perovskite grain size. The larger photocurrent is due to the enhanced absorption efficiency for thicker perovskite layers. The larger open-circuit voltage (VOC ) is ascribed to the reduced trap-assisted recombination for the larger grains. As a result, the power conversion efficiency exceeds 19% at best. Further improvement in VOC would be possible if the trap density were reduced.


Applied Physics Letters | 2010

Surface segregation at the aluminum interface of poly(3-hexylthiophene)/fullerene solar cells

Akiko Orimo; Kohji Masuda; Satoshi Honda; Hiroaki Benten; Shinzaburo Ito; Hideo Ohkita; Hiroshi Tsuji

The effects of thermal annealing before and after Al deposition on poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blend solar cells were investigated by current density-voltage measurements and x-ray photoelectron spectroscopy (XPS). Compared to the preannealed device, the postannealed device exhibited enhanced open-circuit voltage (VOC), which is ascribed to the decrease in the reverse saturation current density J0. The XPS measurements demonstrated that P3HT is dominant at the Al interface in the preannealed device while PCBM is instead dominant in the postannealed device. This surface-segregated PCBM formed in the postannealed device can serve as a hole-blocking layer at the Al interface to reduce J0, and therefore improve VOC.


Journal of Materials Chemistry | 2016

Recent research progress of polymer donor/polymer acceptor blend solar cells

Hiroaki Benten; Daisuke Mori; Hideo Ohkita; Shinzaburo Ito

Polymer/polymer blend solar cells based on a blend of two types of conjugated polymers acting as an electron donor (hole transport) and acceptor (electron transport) have recently attracted considerable attention, because they have numerous potential advantages over conventional polymer/fullerene blend solar cells. The highest power conversion efficiency (PCE) was slightly above 2% five years ago, whereas PCEs of beyond 8% are the state-of-the-art today, and the efficiency gap between polymer/polymer and polymer/fullerene systems has closed very rapidly. In this review, we provide an overview of recent progress towards the performance enhancement of polymer/polymer blend solar cells. In addition, we discuss the future outlook and challenges regarding PCEs beyond 10%.


Journal of the American Chemical Society | 2010

Bimodal Polarons and Hole Transport in Poly(3-hexylthiophene):Fullerene Blend Films

Jiamo Guo; Hideo Ohkita; Seiichirou Yokoya; Hiroaki Benten; Shinzaburo Ito

The bimolecular recombination dynamics in blend films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) has been studied by transient absorption spectroscopy. On a microsecond time scale, two polaron bands were observed at 700 and 1000 nm and exhibited different bimolecular recombination dynamics. The 700-nm band decayed with a time-independent bimolecular recombination rate of 10(-12) cm(3) s(-1). The activation energy was as small as approximately 0.078 eV independently of the carrier density. On the other hand, the 1000-nm band decayed with a time-dependent bimolecular recombination rate, which varied from 10(-12) to 10(-13) cm(3) s(-1), depending on time or carrier density. The activation energy decreased exponentially from 0.178 to 0.097 eV with the increase in the carrier density. Therefore, we assigned the 700-nm band to freely mobile delocalized polarons in crystalline P3HT domains and the 1000-nm band to localized polarons trapped in relatively disordered P3HT domains. At a charge density of 10(17) cm(-3), which corresponds to 1 sun open-circuit condition, some localized polarons exhibited trap-free bimolecular recombination due to trap-filling. These findings suggest that not only delocalized polarons but also some localized polarons play a crucial role in the efficient hole transport in P3HT:PCBM solar cells.

Collaboration


Dive into the Hideo Ohkita's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keita Tani

Osaka Kyoiku University

View shared research outputs
Top Co-Authors

Avatar

Yasuo Tohda

Osaka Kyoiku University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge