Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideo Shiogama is active.

Publication


Featured researches published by Hideo Shiogama.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Pacific decadal oscillation hindcasts relevant to near-term climate prediction

Takashi Mochizuki; Masayoshi Ishii; Masahide Kimoto; Yoshimitsu Chikamoto; Masahiro Watanabe; Toru Nozawa; Takashi T. Sakamoto; Hideo Shiogama; Toshiyuki Awaji; Nozomi Sugiura; Takahiro Toyoda; Sayaka Yasunaka; Hiroaki Tatebe; Masato Mori

Decadal-scale climate variations over the Pacific Ocean and its surroundings are strongly related to the so-called Pacific decadal oscillation (PDO) which is coherent with wintertime climate over North America and Asian monsoon, and have important impacts on marine ecosystems and fisheries. In a near-term climate prediction covering the period up to 2030, we require knowledge of the future state of internal variations in the climate system such as the PDO as well as the global warming signal. We perform sets of ensemble hindcast and forecast experiments using a coupled atmosphere-ocean climate model to examine the predictability of internal variations on decadal timescales, in addition to the response to external forcing due to changes in concentrations of greenhouse gases and aerosols, volcanic activity, and solar cycle variations. Our results highlight that an initialization of the upper-ocean state using historical observations is effective for successful hindcasts of the PDO and has a great impact on future predictions. Ensemble hindcasts for the 20th century demonstrate a predictive skill in the upper-ocean temperature over almost a decade, particularly around the Kuroshio-Oyashio extension (KOE) and subtropical oceanic frontal regions where the PDO signals are observed strongest. A negative tendency of the predicted PDO phase in the coming decade will enhance the rising trend in surface air-temperature (SAT) over east Asia and over the KOE region, and suppress it along the west coasts of North and South America and over the equatorial Pacific. This suppression will contribute to a slowing down of the global-mean SAT rise.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models

Masahiro Sugiyama; Hideo Shiogama; Seita Emori

Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models.


Climate Dynamics | 2013

An overview of decadal climate predictability in a multi-model ensemble by climate model MIROC

Yoshimitsu Chikamoto; Masahide Kimoto; Masayoshi Ishii; Takashi Mochizuki; Takashi T. Sakamoto; Hiroaki Tatebe; Yoshiki Komuro; Masahiro Watanabe; Toru Nozawa; Hideo Shiogama; Masato Mori; Sayaka Yasunaka; Yukiko Imada

Decadal climate predictability is examined in hindcast experiments by a multi-model ensemble using three versions of the coupled atmosphere-ocean model MIROC. In these hindcast experiments, initial conditions are obtained from an anomaly assimilation procedure using the observed oceanic temperature and salinity with prescribed natural and anthropogenic forcings on the basis of the historical data and future emission scenarios in the Intergovernmental Panel of Climate Change. Results of the multi-model ensemble in our hindcast experiments show that predictability of surface air temperature (SAT) anomalies on decadal timescales mostly originates from externally forced variability. Although the predictable component of internally generated variability has considerably smaller SAT variance than that of externally forced variability, ocean subsurface temperature variability has predictive skills over almost a decade, particularly in the North Pacific and the North Atlantic where dominant signals associated with Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are observed. Initialization enhances the predictive skills of AMO and PDO indices and slightly improves those of global mean temperature anomalies. Improvement of these predictive skills in the multi-model ensemble is higher than that in a single-model ensemble.


Journal of Climate | 2013

Multimodel Detection and Attribution of Extreme Temperature Changes

Seung-Ki Min; Xuebin Zhang; Francis W. Zwiers; Hideo Shiogama; Yu-Shiang Tung; Michael F. Wehner

AbstractRecent studies have detected anthropogenic influences due to increases in greenhouse gases on extreme temperature changes during the latter half of the twentieth century at global and regional scales. Most of the studies, however, were based on a limited number of climate models and also separation of anthropogenic influence from natural factors due to changes in solar and volcanic activities remains challenging at regional scales. Here, the authors conduct optimal fingerprinting analyses using 12 climate models integrated under anthropogenic-only forcing or natural plus anthropogenic forcing. The authors compare observed and simulated changes in annual extreme temperature indices of coldest night and day (TNn and TXn) and warmest night and day (TNx and TXx) from 1951 to 2000. Spatial domains from global mean to continental and subcontinental regions are considered and standardization of indices is employed for better intercomparisons between regions and indices. The anthropogenic signal is detect...


Journal of Climate | 2013

Impact of Strong Tropical Volcanic Eruptions on ENSO Simulated in a Coupled GCM

Masamichi Ohba; Hideo Shiogama; Tokuta Yokohata; Masahiro Watanabe

AbstractThe impact of strong tropical volcanic eruptions (SVEs) on the El Nino–Southern Oscillation (ENSO) and its phase dependency is investigated using a coupled general circulation model (CGCM). This paper investigates the response of ENSO to an idealized SVE forcing, producing a peak perturbation of global-mean surface shortwave radiation larger than −6.5 W m−2. Radiative forcing due to volcanic aerosols injected into the stratosphere induces tropical surface cooling around the volcanic forcing peak. Identical-twin forecast experiments of an ENSO-neutral year in response to an SVE forcing show an El Nino–like warming lagging one year behind the peak forcing. In addition to a reduced role of the mean subsurface water upwelling (known as the dynamical thermostat mechanism), the rapid land surface cooling around the Maritime Continent weakens the equatorial Walker circulation, contributing to the positive zonal gradient of sea surface temperature (SST) and precipitation anomalies over the equatorial Paci...


Nature Communications | 2011

Observational constraints indicate risk of drying in the Amazon basin

Hideo Shiogama; Seita Emori; Naota Hanasaki; Manabu Abe; Yuji Masutomi; Kiyoshi Takahashi; Toru Nozawa

Climate warming due to human activities will be accompanied by hydrological cycle changes. Economies, societies and ecosystems in South America are vulnerable to such water resource changes. Hence, water resource impact assessments for South America, and corresponding adaptation and mitigation policies, have attracted increased attention. However, substantial uncertainties remain in the current water resource assessments that are based on multiple coupled Atmosphere Ocean General Circulation models. This uncertainty varies from significant wetting to catastrophic drying. By applying a statistical method, we characterized the uncertainty and identified global-scale metrics for measuring the reliability of water resource assessments in South America. Here, we show that, although the ensemble mean assessment suggested wetting across most of South America, the observational constraints indicate a higher probability of drying in the Amazon basin. Thus, over-reliance on the consensus of models can lead to inappropriate decision making.


Climate Dynamics | 2012

The contribution of anthropogenic forcings to regional changes in temperature during the last decade

Nikolaos Christidis; Peter A. Stott; Francis W. Zwiers; Hideo Shiogama; Toru Nozawa

Regional distributions of the mean annual temperature in the 2000s are computed with and without the effect of anthropogenic influences on the climate in several sub-continental regions. Simulated global patterns of the temperature response to external forcings are regressed against observations using optimal fingerprinting. The global analysis provides constraints which are then used to construct the regional temperature distributions. A similar approach was also employed in previous work, but here the methodology is extended to examine changes in any region, including areas with a poor observational coverage that were omitted in the earlier study. Two different General Circulation Models (GCMs) are used in the analysis. Anthropogenic forcings are found to have at least quadrupled the likelihood of occurrence of a year warmer than the warmest year since 1900 in 23 out of the 24 regions. The temperature distributions computed with the two models are very similar. While a more detailed assessment of model dependencies remains to be made once additional suitable GCM simulations become available, the present study introduces the statistical methodology and demonstrates its first application. The derived information concerning the effect of human influences on the regional climate is useful for adaptation planning. Moreover, by pre-computing the change in the likelihood of exceeding a temperature threshold over a range of thresholds, this kind of analysis enables a near real-time assessment of the anthropogenic impact on the observed regional temperatures.


Geophysical Research Letters | 2014

Attributing the increase in Northern Hemisphere hot summers since the late 20th century

Youichi Kamae; Hideo Shiogama; Masahiro Watanabe; Masahide Kimoto

Anomalously high summertime temperatures have occurred with increasing frequency since the late 20th century. It is not clear why hot summers are becoming more frequent despite the recent slowdown in the rise in global surface air temperature. To examine factors affecting the historical variation in the frequency of hot summers over the Northern Hemisphere (NH), we conducted three sets of ensemble simulations with an atmospheric general circulation model. The model accurately reproduced interannual variation and long-term increase in the occurrence of hot summers. Decadal variabilities in the Pacific and Atlantic Oceans accounted for 43 ± 27% of the recent increase over the NH middle latitudes. In addition, direct influence of anthropogenic forcing also contributes to increasing the frequency since the late 20th century. The results suggest that the heat extremes can become more frequent in the coming decade even with the persistent slowdown in the global-mean surface warming.


Journal of Climate | 2010

Emission Scenario Dependency of Precipitation on Global Warming in the MIROC3.2 Model

Hideo Shiogama; Seita Emori; Kiyoshi Takahashi; Tatsuya Nagashima; Tomoo Ogura; Toru Nozawa; Toshihiko Takemura

Abstract The precipitation sensitivity per 1 K of global warming in twenty-first-century climate projections is smaller in an emission scenario with larger greenhouse gas concentrations and aerosol emissions, according to the Model for Interdisciplinary Research on Climate 3.2 (MIROC3.2) coupled atmosphere–ocean general circulation model. The authors examined the reasons for the precipitation sensitivity to emission scenarios by performing separated individual forcing runs under high and low emission scenarios. It was found that the dependency on emission scenario is mainly caused by differences in black and organic carbon aerosol forcing (the sum of which is cooling forcing) between the emission scenarios and that the precipitation is more sensitive to carbon aerosols than well-mixed greenhouse gases. They also investigated the reason for the larger precipitation sensitivity (larger magnitude of precipitation decrease per 1 K cooling of temperature) in the carbon aerosol runs. Surface dimming due to the ...


Current Climate Change Reports | 2015

Rapid Adjustments of Cloud and Hydrological Cycle to Increasing CO2: a Review

Youichi Kamae; Masahiro Watanabe; Tomoo Ogura; Masakazu Yoshimori; Hideo Shiogama

Rapid cloud response to instantaneous radiative perturbation in the troposphere due to change in CO2 concentration is called cloud adjustment. Cloud adjustment develops on a short timescale because it is separated from surface temperature-mediated changes in cloud. Adjustments in cloud and tropospheric properties including the hydrological cycle have attracted considerable attention because of their importance in the interpretation of mechanisms of climate change and the identification of sources of uncertainty in climate sensitivity. Modeling studies have clearly revealed that major aspects of the tropospheric adjustment including the warming and drying of the troposphere, associated reduction of low cloud and increasing shortwave cloud radiative forcing, downward shift of the low-cloud layer, and slowdown of the global hydrological cycle, are common among many climate model simulations. Combinations of model simulations with realistic and idealized aqua-planet settings have helped demonstrate the roles of land and robust aspects of the tropospheric adjustment.

Collaboration


Dive into the Hideo Shiogama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toru Nozawa

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Seita Emori

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Masayoshi Ishii

Japan Meteorological Agency

View shared research outputs
Top Co-Authors

Avatar

Tokuta Yokohata

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar

Tomoo Ogura

National Institute for Environmental Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge