Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideo Tsukada is active.

Publication


Featured researches published by Hideo Tsukada.


Science | 2007

Time-Dependent Central Compensatory Mechanisms of Finger Dexterity After Spinal Cord Injury

Yukio Nishimura; Hirotaka Onoe; Yosuke Morichika; Sergei Perfiliev; Hideo Tsukada; Tadashi Isa

Transection of the direct cortico-motoneuronal pathway at the mid-cervical segment of the spinal cord in the macaque monkey results in a transient impairment of finger movements. Finger dexterity recovers within a few months. Combined brain imaging and reversible pharmacological inactivation of motor cortical regions suggest that the recovery involves the bilateral primary motor cortex during the early recovery stage and more extensive regions of the contralesional primary motor cortex and bilateral premotor cortex during the late recovery stage. These changes in the activation pattern of frontal motor-related areas represent an adaptive strategy for functional compensation after spinal cord injury.


Synapse | 2000

Ketamine decreased striatal [11C]raclopride binding with no alterations in static dopamine concentrations in the striatal extracellular fluid in the monkey brain: Multiparametric PET studies combined with microdialysis analysis

Hideo Tsukada; Norihiro Harada; Shingo Nishiyama; Hiroyuki Ohba; Kengo Sato; Dai Fukumoto; Takeharu Kakiuchi

The effects of ketamine, a noncompetitive antagonist of NMDA receptors, on the striatal dopaminergic system were evaluated multiparametrically in the monkey brain using high‐resolution positron emission tomography (PET) in combination with microdialysis. L‐[β‐11C]DOPA, [11C]raclopride, and [11C]β‐CFT were used to evaluate dopamine synthesis rate, D2 receptor binding, and transporter availability, respectively, in conscious and ketamine‐anesthetized animals. Dopamine concentrations in the striatal extracellular fluid (ECF) were simultaneously measured by PET. Thirty minutes prior to PET scan, intravenous administration of ketamine was started by continuous infusion at a rate of 3 or 10 mg/kg/h. Ketamine infusion dose‐dependently decreased [11C]raclopride binding, but induced no significant changes in dopamine concentration in the striatal ECF as measured by microdialysis at any dose used. In contrast, ketamine increased both dopamine synthesis and DAT availability as measured by L‐[β‐11C]DOPA and [11C]β‐CFT, respectively, in a dose‐dependent manner. These results suggest that the inhibition of glutamatergic neuronal activity modulates dopamine turnover in the striatum by simultaneous enhancement of the dynamics of dopamine synthesis and DAT availability to the same extent, resulting in no apparent changes in ECF dopamine concentration as measured by microdialysis. It also suggests that the alteration of [11C]raclopride binding in vivo as measured by PET might not simply be modulated by the static synaptic concentration of dopamine. Synapse 37:95–103, 2000.


Brain Research | 1999

Isoflurane anesthesia enhances the inhibitory effects of cocaine and GBR12909 on dopamine transporter: PET studies in combination with microdialysis in the monkey brain.

Hideo Tsukada; Shingo Nishiyama; Takeharu Kakiuchi; Hiroyuki Ohba; Kengo Sato; Norihiro Harada; Satoshi Nakanishi

The effects of the dopamine transporter (DAT) inhibitors cocaine and GBR12909 on DAT and dopamine D(2) receptors were evaluated in the brains under awake and isoflurane-anesthetized monkeys using high-resolution positron emission tomography (PET) in combination with microdialysis. The striatal DAT availability and dopamine D(2) receptor binding were assayed with [11C]beta-CFT (WIN35,428) and [11C]raclopride, respectively. Cocaine or GBR12909 at a dose of 2 mg/kg was administered intravenously 30 min prior to the injection of labeled compounds. In the awake state, the in vivo binding of [11C]beta-CFT to DAT was significantly decreased by administration of cocaine or GBR12909 at a dose of 2 mg/kg. In contrast, [11C]raclopride binding to dopamine D(2) receptors was decreased only by GBR12909. Under isoflurane anesthesia, dopamine concentration in the striatal extracellular fluid (ECF), as measured by microdialysis, was markedly increased by cocaine or GBR12909 compared to the awake state. Isoflurane anesthesia more markedly enhanced the binding of [11C]beta-CFT in the saline-injected animals, and the degrees of reduction by cocaine and GBR12909 were more marked than those observed in the awake state. Under isoflurane anesthesia, the binding of [11C]raclopride was reduced not only by GBR12909 but also by cocaine which did not affect the binding in the awake state. Taken together, these observations indicated that isoflurane anesthesia enhanced not only the direct inhibitory effects of cocaine and GBR12909 on DAT, but also their indirect effects on dopamine D(2) receptors.


The Journal of Neuroscience | 2009

Neuronal Circuit Remodeling in the Contralateral Cortical Hemisphere during Functional Recovery from Cerebral Infarction

Yusuke Takatsuru; Dai Fukumoto; Miki Yoshitomo; Tomomi Nemoto; Hideo Tsukada; Junichi Nabekura

Recent advances in functional imaging of human brain activity in stroke patients, e.g., functional magnetic resonance imaging, have revealed that cortical hemisphere contralateral to the infarction plays an important role in the recovery process. However, underlying mechanisms occurring in contralateral hemisphere during functional recovery have not been elucidated. We experimentally induced a complete infarction of somatosensory cortex in right hemisphere of mice and examined the neuronal changes in contralateral (left) somatosensory cortex during recovery. Both basal and ipsilateral somatosensory stimuli-evoked neuronal activity in left (intact) hemisphere transiently increased 2 d after stroke, followed by an increase in the turnover rate of usually stable mushroom-type synaptic spines at 1 week, observed by using two-photon imaging in vivo. At 4 weeks after stroke, when functional recovery had occurred, a new pattern of electrical circuit activity in response to somatosensory stimuli was established in intact ipsilateral hemisphere. Thus, the left somatosensory cortex can compensate for the loss of the right somatosensory cortex by remodeling neuronal circuits and establishing new sensory processing. This finding could contribute to establish the effective clinical treatments targeted on the intact hemisphere for the recovery of impaired functions and to achieve better quality of life of patients.


Oncogene | 2002

Anti-neovascular therapy using novel peptides homing to angiogenic vessels.

Naoto Oku; Tomohiro Asai; Koh Watanabe; Koichi Kuromi; Mayumi Nagatsuka; Kohta Kurohane; Hironori Kikkawa; Koichi Ogino; Michinori Tanaka; Dai Ishikawa; Hideo Tsukada; Masanobu Momose; Jun Nakayama; Takao Taki

Cancer chemotherapy targeted to angiogenic vessels is expected to cause indirect tumor regression through the damage of the neovasculature without the induction of drug resistance. To develop a tool for neovasculature-specific drug delivery, we isolated novel peptides homing to angiogenic vessels formed by a dorsal air sac method from a phage-displayed peptide library. Three distinct phage clones that markedly accumulated in murine tumor xenografts presented PRPGAPLAGSWPGTS-, DRWRPALPVVLFPLH- or ASSSYPLIHWRPWAR-peptide respectively. After the determination of the epitope sequences of these peptides, we modified liposomes with epitope penta-peptides. Liposome modified with APRPG-peptide showed high accumulation in murine tumor xenografts, and APRPG-modified liposome encapsulating adriamycin effectively suppressed experimental tumor growth. Finally, specific binding of APRPG-modified liposome to human umbilical endothelial cells, and that of PRP-containing peptide to angiogenic vessels in human tumors, i.e., islet cell tumor and glioblastoma, were demonstrated. The present study indicates the usefulness of APRPG-peptide as a tool for anti-neovascular therapy, a novel modality of cancer treatment.


Brain Research | 1994

Ketamine increases the striatal N-[11C]methylspiperone binding in vivo: positron emission tomography study using conscious rhesus monkey

Hirotaka Onoe; Osamu Inoue; Kazutoshi Suzuki; Hideo Tsukada; Takashi Itoh; Nobuko Mataga; Yasuyoshi Watanabe

A system for positron emission tomography study of conscious monkeys was newly developed. By use of this system in combination with a microdialysis technique, the effect of ketamine on the binding and release of dopamine was investigated. The administration of ketamine (5 mg/kg) caused sedation accompanied by psychotic symptoms such as nystagmus and stereotyped movements of extremities. During this psychotomimetic period produced by ketamine, a significant increase in the accumulation of the dopamine D2 receptor ligand N-[11C]methylspiperone was observed in the striatum compared with the level in the conscious state, while no significant change was observed in the frontal cortex and cerebellum. In contrast to the use of ketamine as the anesthetic, pentobarbital (25 mg/kg), which produced deeper anesthesia but no psychotic symptoms, caused a decrease in the accumulation of N-[11C]methylspiperone in the striatum. Kinetic analysis, conducted by a graphical method, revealed that the value of the association constant (K3) for N-[11C]methylspiperone binding in the striatum was increased to approximately 130% by ketamine and decreased to approximately 70% by pentobarbital compared with the control values. Furthermore, the release of dopamine from the striatum measured by microdialysis was not affected by ketamine anesthesia. These results indicate that ketamine facilitates striatal dopaminergic neurotransmission through increasing the binding activity of dopamine D2 receptors in the striatum, and suggest that these changes may be related to the psychotomimetic behavioral symptoms of this drug.


Biological Psychiatry | 2008

Phencyclidine-Induced Cognitive Deficits in Mice Are Improved by Subsequent Subchronic Administration of the Novel Selective α7 Nicotinic Receptor Agonist SSR180711

Kenji Hashimoto; Tamaki Ishima; Yuko Fujita; Masaaki Matsuo; Tatsuhiro Kobashi; Makoto Takahagi; Hideo Tsukada; Masaomi Iyo

BACKGROUND Accumulating evidence suggests that alpha7 nicotinic receptor (alpha7 nAChR) agonists could be potential therapeutic drugs for cognitive deficits in schizophrenia. The present study was undertaken to examine the effects of the novel selective alpha7 nAChR agonist SSR180711 on cognitive deficits in mice after repeated administration of the N-methyl-D-aspartate receptor antagonist phencyclidine (PCP). METHODS Saline or PCP (10 mg/kg/day for 10 days) was administered to mice. Subsequently, vehicle, SSR180711 (.3 or 3.0 mg/kg/day), SSR180711 (3.0 mg/kg/day) + the selective alpha7 nAChR antagonist methyllycaconitine (MLA; 3.0 mg/kg/day), or MLA (3.0 mg/kg/day) was administered IP for 2 consecutive weeks. Twenty-four hours after the final administration, a novel object recognition test was performed. RESULTS The PCP-induced cognitive deficits were significantly improved by subsequent subchronic (2-week) administration of SSR180711 (3.0 mg/kg). The effects of SSR180711 (3.0 mg/kg) were significantly antagonized by co-administration of MLA (3.0 mg/kg). Furthermore, Western blot analysis and immunohistochemistry revealed that levels of alpha7 nAChRs in the frontal cortex and hippocampus of the PCP (10 mg/kg/day for 10 days)-treated mice were significantly lower than those of saline-treated mice. CONCLUSIONS These findings suggest that repeated PCP administration significantly decreased the density of alpha7 nAChRs in the brain and that the alpha7 nAChR agonist SSR180711 could ameliorate cognitive deficits in mice after repeated administration of PCP. Therefore, alpha7 nAChR agonists including SSR180711 are potential therapeutic drugs for treating cognitive deficits in schizophrenic patients.


NeuroImage | 2002

Neural substrates of human facial expression of pleasant emotion induced by comic films: a PET Study.

Masao Iwase; Yasuomi Ouchi; Hiroyuki Okada; Chihiro Yokoyama; Shuji Nobezawa; Etsuji Yoshikawa; Hideo Tsukada; Masaki Takeda; Ko Yamashita; Masatoshi Takeda; Kouzi Yamaguti; Hirohiko Kuratsune; Akira Shimizu; Yasuyoshi Watanabe

Laughter or smile is one of the emotional expressions of pleasantness with characteristic contraction of the facial muscles, of which the neural substrate remains to be explored. This currently described study is the first to investigate the generation of human facial expression of pleasant emotion using positron emission tomography and H(2)(15)O. Regional cerebral blood flow (rCBF) during laughter/smile induced by visual comics and the magnitude of laughter/smile indicated significant correlation in the bilateral supplementary motor area (SMA) and left putamen (P < 0.05, corrected), but no correlation in the primary motor area (M1). In the voluntary facial movement, significant correlation between rCBF and the magnitude of EMG was found in the face area of bilateral M1 and the SMA (P < 0.001, uncorrected). Laughter/smile, as opposed to voluntary movement, activated the visual association areas, left anterior temporal cortex, left uncus, and orbitofrontal and medial prefrontal cortices (P < 0.05, corrected), whereas voluntary facial movement generated by mimicking a laughing/smiling face activated the face area of the left M1 and bilateral SMA, compared with laughter/smile (P < 0.05, corrected). We demonstrated distinct neural substrates of emotional and volitional facial expression and defined cognitive and experiential processes of a pleasant emotion, laughter/smile.


Brain Research | 1999

Is synaptic dopamine concentration the exclusive factor which alters the in vivo binding of [11C]raclopride?: PET studies combined with microdialysis in conscious monkeys.

Hideo Tsukada; Shingo Nishiyama; Takeharu Kakiuchi; Hiroyuki Ohba; Kengo Sato; Norihiro Harada

The effects of dopamine release manipulated by drugs on the in vivo binding of [11C]raclopride in the striatum were evaluated in conscious monkeys combined with microdialysis. The in vivo binding of [11C]raclopride was evaluated by high resolution positron emission tomography (PET), and the dopamine concentrations in the striatal extracellular fluid (ECF) were measured by microdialysis in the same animals. The systemic administration of the direct dopamine enhancers, GBR12909 (a dopamine transporter (DAT) blocker, at 0.5, 2 and 5 mg/kg) or methamphetamine (a dopamine releaser, at 0.1, 0.3 and 1 mg/kg) dose-dependently increased the dopamine concentration in the striatal ECF, and decreased in vivo [11C]raclopride binding in the striatum. The administration of the indirect dopamine modulators benztropine (a muscarinic cholinergic antagonist, at 0.1, 0.3 and 1 mg/kg) or ketanserine (a 5-HT2 antagonist, at 0.3, 1 and 3 mg/kg) also increased dopamine level in the striatal ECF, and decreased [11C]raclopride binding in a dose-dependent manner. However, the plots of percentage change in dopamine concentration in striatal EFC against that in [11C] raclopride binding indicated different relationships between the effects of direct dopamine enhancers (GBR12909 and methamphetamine) and indirect dopamine modulators (benztropine and ketanserine). These results suggested that the alternation of [11C]raclopride binding in vivo as measured by PET was differently affected by different neuronal manipulations, and not simply by the synaptic concentration of dopamine.


International Journal of Pharmaceutics | 2010

T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes

Hiroyuki Koide; Tomohiro Asai; Kentaro Hatanaka; Shuji Akai; Takayuki Ishii; Eriya Kenjo; Tatsuhiro Ishida; Hiroshi Kiwada; Hideo Tsukada; Naoto Oku

Repeated injection of polyethyleneglycol-modified (PEGylated) liposomes causes a rapid clearance of them from the bloodstream, this phenomenon is called accelerated blood clearance (ABC). In the present study, we focused on the immune system responsible for the ABC phenomenon. PEGylated liposomes were preadministered to BALB/c mice and [(3)H]-labeled ones were then administered to them 3 days after the preadministration. Consistent with our previous results, the preadministration with PEGylated liposomes triggered the rapid clearance of [(3)H]-labeled PEGylated liposomes from the bloodstream, but that with PEGylated liposomes encapsulating doxorubicin (Dox) did not. In addition, we found that the ABC phenomenon was observed when a mixture of free Dox and PEGylated liposomes was preadministered. These data indicate that immune cells responsible for the ABC phenomenon might be selectively damaged by the Dox encapsulated in PEGylated liposomes. The ABC phenomenon was also observed in BALB/c nu/nu mice, but not in BALB/c SCID mice. The amount of anti-PEG IgM antibody induced by the stimulation with the PEGylated liposomes was significantly increased in the BALB/c nu/nu mice, but not in the BALB/c SCID ones. These data indicate that a T cell-independent B cell response would play a significant role in the ABC phenomenon. Furthermore, the present study suggests that PEGylated liposomes might be recognized by B cells as a thymus-independent type 2 (TI-2) antigen. The present study provides important information for the future development of liposomal medicines.

Collaboration


Dive into the Hideo Tsukada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hirotaka Onoe

Osaka Bioscience Institute

View shared research outputs
Top Co-Authors

Avatar

Naoto Oku

Nara Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge