Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideshi Okada is active.

Publication


Featured researches published by Hideshi Okada.


Circulation | 2006

Preventive Effect of Erythropoietin on Cardiac Dysfunction in Doxorubicin-Induced Cardiomyopathy

Longhu Li; Genzou Takemura; Yiwen Li; Shusaku Miyata; Masayasu Esaki; Hideshi Okada; Hiromitsu Kanamori; Ngin Cin Khai; Rumi Maruyama; Atsushi Ogino; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

Background— Doxorubicin is a highly effective antineoplastic drug, but its clinical use is limited by its adverse side effects on the heart. We investigated possible protective effects of erythropoietin against doxorubicin-induced cardiomyopathy. Methods and Results— Cardiomyopathy was induced in mice by a single intraperitoneal injection of doxorubicin (15 mg/kg). In some cases, human recombinant erythropoietin (5000 U/kg) was started simultaneously. Two weeks later, left ventricular dilatation and dysfunction were apparent in mice given doxorubicin but were significantly attenuated by erythropoietin treatment. Erythropoietin also protected hearts against doxorubicin-induced cardiomyocyte atrophy and degeneration, myocardial fibrosis, inflammatory cell infiltration, and downregulation of expression of GATA-4 and 3 sarcomeric proteins, myosin heavy chain, troponin I, and desmin. Cyclooxygenase-2 expression was upregulated in doxorubicin-treated hearts, and that, too, was attenuated by erythropoietin. No doxorubicin-induced apoptotic effects were seen, nor were any changes seen in the expression of tumor necrosis factor-&agr; or transforming growth factor-&bgr;1. Antiatrophic and GATA-4 restoring effects of erythropoietin were demonstrated in the in vitro experiments with cultured cardiomyocytes exposed to doxorubicin, which indicated the direct cardioprotective effects of erythropoietin beyond erythropoiesis. Cardiac erythropoietin receptor expression was downregulated in doxorubicin-induced cardiomyopathy but was restored by erythropoietin. Among the downstream mediators of erythropoietin receptor signaling, activation of extracellular signal-regulated kinase was reduced by doxorubicin but restored by erythropoietin. By contrast, erythropoietin was ineffective when administered after cardiac dysfunction was established in the chronic stage. Conclusions— The present study indicates a protective effect of erythropoietin against doxorubicin-induced cardiomyopathy.


Circulation | 2005

Postinfarction Gene Therapy Against Transforming Growth Factor-β Signal Modulates Infarct Tissue Dynamics and Attenuates Left Ventricular Remodeling and Heart Failure

Hideshi Okada; Genzou Takemura; Ken-ichiro Kosai; Yiwen Li; Tomoyuki Takahashi; Masayasu Esaki; Kentaro Yuge; Shusaku Miyata; Rumi Maruyama; Atsushi Mikami; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

Background—Fibrosis and progressive failure are prominent pathophysiological features of hearts after myocardial infarction (MI). We examined the effects of inhibiting transforming growth factor-β (TGF-β) signaling on post-MI cardiac fibrosis and ventricular remodeling and function. Methods and Results—MI was induced in mice by left coronary artery ligation. An adenovirus harboring soluble TGF-β type II receptor (Ad.CAG-sTβRII), a competitive inhibitor of TGF-β, was then injected into the hindlimb muscles on day 3 after MI (control, Ad.CAG-LacZ). Post-MI survival was significantly improved among sTβRII-treated mice (96% versus control at 71%), which also showed a significant attenuation of ventricular dilatation and improved function 4 weeks after MI. At the same time, histological analysis showed reduced fibrous tissue formation. Although MI size did not differ in the 2 groups, MI thickness was greater and circumference was smaller in the sTβRII-treated group; within the infarcted area, α-smooth muscle actin–positive cells were abundant, which might have contributed to infarct contraction. Apoptosis among myofibroblasts in granulation tissue during the subacute stage (10 days after MI) was less frequent in the sTβRII-treated group, and sTβRII directly inhibited Fas-induced apoptosis in cultured myofibroblasts. Finally, treatment of MI-bearing mice with sTβRII was ineffective if started during the chronic stage (4 weeks after MI). Conclusions—Postinfarction gene therapy aimed at suppressing TGF-β signaling mitigates cardiac remodeling by affecting cardiac fibrosis and infarct tissue dynamics (apoptosis inhibition and infarct contraction). This suggests that such therapy may represent a new approach to the treatment of post-MI heart failure, applicable during the subacute stage.


Circulation | 2003

Postinfarction Treatment With an Adenoviral Vector Expressing Hepatocyte Growth Factor Relieves Chronic Left Ventricular Remodeling and Dysfunction in Mice

Yiwen Li; Genzou Takemura; Ken-ichiro Kosai; Kentaro Yuge; Satoshi Nagano; Masayasu Esaki; Kazuko Goto; Tomoyuki Takahashi; Kenji Hayakawa; Masahiko Koda; Yukinori Kawase; Rumi Maruyama; Hideshi Okada; Shinya Minatoguchi; Hiroyuki Mizuguchi; Takako Fujiwara; Hisayoshi Fujiwara

Background—Hepatocyte growth factor (HGF) is implicated in tissue regeneration, angiogenesis, and antiapoptosis. However, its chronic effects are undetermined on postinfarction left ventricular (LV) remodeling and heart failure. Methods and Results—In mice, on day 3 after myocardial infarction (MI), adenovirus encoding human HGF (Ad.CAG-HGF) was injected into the hindlimb muscles (n=13). As a control (n=15), LacZ gene was used. A persistent increase in plasma human HGF was confirmed in the treated mice: 1.0±0.2 ng/mL 4 weeks later. At 4 weeks after MI, the HGF-treated mice showed improved LV remodeling and dysfunction compared with controls, as indicated by the smaller LV cavity and heart/body weight ratio, greater % fractional shortening and LV ±dP/dt, and lower LV end-diastolic pressure. The cardiomyocytes near MI, including the papillary muscles and trabeculae, were greatly hypertrophied in the treated mice. The old infarct size was similar between the groups, but the infarct wall was thicker in the treated mice, where the density of noncardiomyocyte cells, including vessels, was greater. Fibrosis of the ventricular wall was significantly reduced in them. Examination of 10-day-old MI revealed no proliferation or apoptosis but showed augmented expression of c-Met/HGF receptor in cardiomyocytes near MI, whereas a greater proliferating activity and smaller apoptotic rate of granulation tissue cells in the HGF-treated hearts was observed compared with controls. Conclusions—Postinfarction HGF gene therapy improved LV remodeling and dysfunction through hypertrophy of cardiomyocytes, infarct wall thickening, preservation of vessels, and antifibrosis. These findings imply a novel therapeutic approach against postinfarction heart failure.


Circulation Research | 2004

Critical Roles for the Fas/Fas Ligand System in Postinfarction Ventricular Remodeling and Heart Failure

Yiwen Li; Genzou Takemura; Ken-ichiro Kosai; Tomoyuki Takahashi; Hideshi Okada; Shusaku Miyata; Kentaro Yuge; Satoshi Nagano; Masayasu Esaki; Ngin Cin Khai; Kazuko Goto; Atsushi Mikami; Rumi Maruyama; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

In myocardial infarction (MI), granulation tissue cells disappear via apoptosis to complete a final scarring with scanty cells. Blockade of this apoptosis was reported to improve post-MI ventricular remodeling and heart failure. However, the molecular biological mechanisms for the apoptosis are unknown. Fas and Fas ligand were overexpressed in the granulation tissue at the subacute stage of MI (1 week after MI) in mice, where apoptosis frequently occurred. In mice lacking functioning Fas (lpr strain) and in those lacking Fas ligand (gld strain), apoptotic rate of granulation tissue cells was significantly fewer compared with that of genetically controlled mice, and post-MI ventricular remodeling and dysfunction were greatly attenuated. Mice were transfected with adenovirus encoding soluble Fas (sFas), a competitive inhibitor of Fas ligand, on the third day of MI. The treatment resulted in suppression of granulation tissue cell apoptosis and produced a thick, cell-rich infarct scar containing rich vessels and bundles of smooth muscle cells with a contractile phenotype at the chronic stage (4 weeks after MI). This accompanied not only alleviation of heart failure but also survival improvement. However, the sFas gene delivery during scar tissue phase was ineffective, suggesting that beneficial effects of the sFas gene therapy owes to inhibition of granulation tissue cell apoptosis. The Fas/Fas ligand interaction plays a critical role for granulation tissue cell apoptosis after MI. Blockade of this apoptosis by interfering with the Fas/Fas ligand interaction may become one of the therapeutic strategies against chronic heart failure after large MI.


Circulation | 2003

Inhibition of Granulation Tissue Cell Apoptosis During the Subacute Stage of Myocardial Infarction Improves Cardiac Remodeling and Dysfunction at the Chronic Stage

Kenji Hayakawa; Genzou Takemura; Motoo Kanoh; Yiwen Li; Masahiko Koda; Yukinori Kawase; Rumi Maruyama; Hideshi Okada; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

Background Granulation tissue cells at the subacute stage of myocardial infarction (MI) are eliminated by apoptosis to finally make a scar at the chronic stage. We hypothesized that postinfarct inhibition of apoptosis might preserve myofibroblasts and endothelial cells in granulation and modulate chronic left ventricular (LV) remodeling and heart failure. Methods and Results A pancaspase inhibitor, Boc‐Asp‐fmk (BAF, 10 μmol/kg per day), or vehicle (control) was given to rats with experimental large MI. The treatment was started on the third day after MI and continued until 4‐week‐old MI. Two weeks later, the apoptosis of granulation tissue cells was significantly reduced and conversely, the cell population was greater in BAF. Twelve weeks later, BAF showed significantly greater survival rates (84% versus 42%) with significantly smaller LV cavity, lower LV end‐diastolic pressure and central venous pressure, and higher LV dP/dt, which indicated improvement of LV remodeling and dysfunction. A scar was established in old infarct of control subjects, but in BAF, the infarct wall was thicker because of greater old infarct area, which contained abundant myofibroblasts and vessels. Surprisingly, many of the &agr;‐smooth muscle actin‐positive myofibroblast‐like cells in BAF, making bundles and running parallel to the survived cardiomyocytes, were ultrastructurally mature smooth muscle cells with contractile phenotype. Cardiomyocyte apoptosis in the infarct area was equally rare in each group. Conclusions The postinfarct treatment with BAF improved LV remodeling and dysfunction through inhibition of granulation tissue cell apoptosis. These findings imply a new therapeutic strategy against postinfarct heart failure. (Circulation. 2003;108:104‐109.)


Autophagy | 2006

Autophagic Degeneration and Death of Cardiomyocytes in Heart Failure

Genzou Takemura; Shusaku Miyata; Yukinori Kawase; Hideshi Okada; Rumi Maruyama; Hisayoshi Fujiwara

Numerous cardiomyocytes were found to show autophagic vacuolar degeneration in the UM-X7.1 hamster model of human dilated cardiomyopathy, and autophagy-related proteins – i.e., ubiquitin, cathepsin D and Rab7 – were upregulated in those hearts. Importantly, Evans-blue-positive cardiomyocytes with leaky plasma membranes were also positive for cathepsin D, suggesting a link between autophagic degeneration andcell death. Treatment with granulocyte colony-stimulating factor (G-CSF) significantly improved survival, cardiac function and remodeling in these animals, and such beneficial effects were accompanied by a reduction in autophagic findings, an increase in cardiomyocyte size, and a reduction in myocardial fibrosis. G-CSF inducedchanges in molecular signaling included activation of Akt and signal transducer and activator of transcription-3, a reduction in the level of myocardial tumor necrosis factor-alpha, and an increase in those of matrix metalloproteinases. By contrast, neither cardiomyocyte apoptosis nor regeneration of cardiomyocytes from bone marrowderived cells was significant. It thus appears that autophagic death is an importantcontributor to cardiomyocyte loss in the cardiomyopathic hamster and that G-CSF exerts a beneficial effect, mainly via an antiautophagic mechanism. Addendum to: Autophagic Cardiomyocyte Death in Cardiomyopathic Hamsters and Its Prevention by Granulocyte Colony-Stimulating Factor S. Miyata, G. Takemura, Y. Kawase, Y. Li, H. Okada, R. Maruyama, H. Ushikoshi, M. Esaki, H. Kanamori, L. Li, Y. Misao, A. Tezuka, T. Toyo-Oka, S. Minatoguchi, T. Fujiwara and H. Fujiwara Am J Pathol 2006; 168:386-97


Circulation Research | 2014

Integrins and Integrin-Associated Proteins in the Cardiac Myocyte

Sharon Israeli-Rosenberg; Ana Maria Manso; Hideshi Okada; Robert S. Ross

Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.


Laboratory Investigation | 2006

Treatment with granulocyte colony-stimulating factor ameliorates chronic heart failure

Yiwen Li; Genzou Takemura; Hideshi Okada; Shusaku Miyata; Masayasu Esaki; Rumi Maruyama; Hiromitsu Kanamori; Longhu Li; Atsushi Ogino; Yu Misao; Ngin Cin Khai; Atsushi Mikami; Shinya Minatoguchi; Takako Fujiwara; Hisayoshi Fujiwara

Chronic heart failure remains a leading cause of mortality. Although granulocyte colony-stimulating factor (G-CSF) is reported to have a beneficial affect on postinfarction cardiac remodeling and dysfunction when administered before the onset of or at the acute stage of myocardial infarction (MI), its effect on established heart failure is unknown. We show here that subcutaneous administration of G-CSF greatly improves the function of murine hearts failing due to a large, healed MI. G-CSF changed the geometry of the infarct scar from elongated and thin to short and thick, induced hypertrophy among surviving cardiomyocytes, and reduced myocardial fibrosis. Expression of G-CSF receptor was confirmed in failing hearts and was upregulated by G-CSF treatment. G-CSF treatment also led to activation of signal transducer and activator of transcription-3 and induction of GATA-4 and various sarcomeric proteins such as myosin heavy chain, troponin I and desmin. Expression of metalloproteinase-2 and -9 was also increased in G-CSF-treated hearts, while that of tumor necrosis factor-α, angiotensin II type 1 receptor (AT1) and transforming growth factor-β1 was reduced. Although activation of Akt was noted in G-CSF-treated hearts, vessel density was unchanged, and apoptosis was too rare to exert a meaningful effect. No bone marrow-derived cardiomyocytes or vascular cells were detected in the failing hearts of green fluorescent protein chimeric mice. Finally, beneficial effects of G-CSF on cardiac function were found persisting long after discontinuing the treatment (2 weeks). Collectively, these findings suggest G-CSF administration could be an effective approach to treating chronic heart failure following a large MI.


The FASEB Journal | 2012

Mitochondria-localized caveolin in adaptation to cellular stress and injury

Heidi N. Fridolfsson; Yoshitaka Kawaraguchi; Sameh S. Ali; Mathivadhani Panneerselvam; Ingrid R. Niesman; J. Cameron Finley; Sarah E. Kellerhals; Michael Y. Migita; Hideshi Okada; Ana L. Moreno; Michelle Jennings; Michael W. Kidd; Jacqueline A. Bonds; Ravi C. Balijepalli; Robert S. Ross; Piyush M. Patel; Atsushi Miyanohara; Qun Chen; Edward J. Lesnefsky; Brian P. Head; David Roth; Paul A. Insel; Hemal H. Patel

We show here that the apposition of plasma membrane caveolae and mitochondria (first noted in electron micrographs >50 yr ago) and caveolae‐mitochondria interaction regulates adaptation to cellular stress by modulating the structure and function of mitochondria. In C57Bl/6 mice engineered to overexpress caveolin specifically in cardiac myocytes (Cav‐3 OE), localization of caveolin to mitochondria increases membrane rigidity (4.2%; P<0.05), tolerance to calcium, and respiratory function (72% increase in state 3 and 23% increase in complex IV activity; P<0.05), while reducing stress‐induced generation of reactive oxygen species (by 20% in cellular superoxide and 41 and 28% in mitochondrial superoxide under states 4 and 3, respectively; P<0.05) in Cav‐3 OE vs. TGneg. By contrast, mitochondrial function is abnormal in caveolin‐knockout mice and Caenorhabditis elegans with null mutations in caveolin (60% increase free radical in Cav‐2 C. elegans mutants; P<0.05). In human colon cancer cells, mitochondria with increased caveolin have a 30% decrease in apoptotic stress (P<0.05), but cells with disrupted mitochondria‐caveolin interaction have a 30% increase in stress response (P<0.05). Targeted gene transfer of caveolin to mitochondria in C57Bl/6 mice increases cardiac mitochondria tolerance to calcium, enhances respiratory function (increases of 90% state 4, 220% state 3, 88% complex IV activity; P<0.05), and decreases (by 33%) cardiac damage (P<0.05). Physical association and apparently the transfer of caveolin between caveolae and mitochondria is thus a conserved cellular response that confers protection from cellular damage in a variety of tissues and settings.—Fridolfsson, H. N., Kawaraguchi, Y., Ali, S. S., Panneerselvam, M., Niesman, I. R., Finley, J. C., Kellerhals, S. E., Migita, M. Y., Okada, H., Moreno, A. L., Jennings, M., Kidd, M. W., Bonds, J. A., Balijepalli, R. C., Ross, R. S., Patel, P. M., Miyanohara, A., Chen, Q., Lesnefsky, E. J., Head, B. P., Roth, D. M., Insel, P. A., Patel, H. H. Mitochondria‐localized caveolin in adaptation to cellular stress and injury. FASEB J. 26, 4637–4649 (2012). www.fasebj.org


Autophagy | 2015

Autophagic adaptations in diabetic cardiomyopathy differ between type 1 and type 2 diabetes

Hiromitsu Kanamori; Genzou Takemura; Kazuko Goto; Akiko Tsujimoto; Atsushi Mikami; Atsushi Ogino; Takatomo Watanabe; Kentaro Morishita; Hideshi Okada; Masanori Kawasaki; Mitsuru Seishima; Shinya Minatoguchi

Little is known about the association between autophagy and diabetic cardiomyopathy. Also unknown are possible distinguishing features of cardiac autophagy in type 1 and type 2 diabetes. In hearts from streptozotocin-induced type 1 diabetic mice, diastolic function was impaired, though autophagic activity was significantly increased, as evidenced by increases in microtubule-associated protein 1 light chain 3/LC3 and LC3-II/-I ratios, SQSTM1/p62 (sequestosome 1) and CTSD (cathepsin D), and by the abundance of autophagic vacuoles and lysosomes detected electron-microscopically. AMP-activated protein kinase (AMPK) was activated and ATP content was reduced in type 1 diabetic hearts. Treatment with chloroquine, an autophagy inhibitor, worsened cardiac performance in type 1 diabetes. In addition, hearts from db/db type 2 diabetic model mice exhibited poorer diastolic function than control hearts from db/+ mice. However, levels of LC3-II, SQSTM1 and phosphorylated MTOR (mechanistic target of rapamycin) were increased, but CTSD was decreased and very few lysosomes were detected ultrastructurally, despite the abundance of autophagic vacuoles. AMPK activity was suppressed and ATP content was reduced in type 2 diabetic hearts. These findings suggest the autophagic process is suppressed at the final digestion step in type 2 diabetic hearts. Resveratrol, an autophagy enhancer, mitigated diastolic dysfunction, while chloroquine had the opposite effects in type 2 diabetic hearts. Autophagy in the heart is enhanced in type 1 diabetes, but is suppressed in type 2 diabetes. This difference provides important insight into the pathophysiology of diabetic cardiomyopathy, which is essential for the development of new treatment strategies.

Collaboration


Dive into the Hideshi Okada's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge