Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hidetoshi Mori is active.

Publication


Featured researches published by Hidetoshi Mori.


Nature Cell Biology | 2013

The perivascular niche regulates breast tumour dormancy

Cyrus M. Ghajar; Héctor Peinado; Hidetoshi Mori; Irina Matei; Kimberley Evason; Hélène Brazier; Dena Almeida; Antonius Koller; Katherine A. Hajjar; Didier Y. R. Stainier; Emily I. Chen; David Lyden; Mina J. Bissell

In a significant fraction of breast cancer patients, distant metastases emerge after years or even decades of latency. How disseminated tumour cells (DTCs) are kept dormant, and what wakes them up, are fundamental problems in tumour biology. To address these questions, we used metastasis assays in mice and showed that dormant DTCs reside on microvasculature of lung, bone marrow and brain. We then engineered organotypic microvascular niches to determine whether endothelial cells directly influence breast cancer cell (BCC) growth. These models demonstrated that endothelial-derived thrombospondin-1 induces sustained BCC quiescence. This suppressive cue was lost in sprouting neovasculature; time-lapse analysis showed that sprouting vessels not only permit, but accelerate BCC outgrowth. We confirmed this surprising result in dormancy models and in zebrafish, and identified active TGF-β1 and periostin as tumour-promoting factors derived from endothelial tip cells. Our work reveals that stable microvasculature constitutes a dormant niche, whereas sprouting neovasculature sparks micrometastatic outgrowth.


The EMBO Journal | 2002

CD44 directs membrane‐type 1 matrix metalloproteinase to lamellipodia by associating with its hemopexin‐like domain

Hidetoshi Mori; Taizo Tomari; Naohiko Koshikawa; Masahiro Kajita; Yoshifumi Itoh; Hiroshi Sato; Hideaki Tojo; Ikuo Yana; Motoharu Seiki

Membrane‐type 1 matrix metalloproteinase (MT1‐ MMP) localizes at the front of migrating cells and degrades the extracellular matrix barrier during cancer invasion. However, it is poorly understood how the polarized distribution of MT1‐MMP at the migration front is regulated. Here, we demonstrate that MT1‐MMP forms a complex with CD44H via the hemopexin‐like (PEX) domain. A mutant MT1‐MMP lacking the PEX domain failed to bind CD44H and did not localize at the lamellipodia. The cytoplasmic tail of CD44H, which comprises interfaces that associate with the actin cytoskeleton, was important for its localization at lamellipodia. Overexpression of a CD44H mutant lacking the cytoplasmic tail also prevented MT1‐MMP from localizing at the lamellipodia. Modulation of F‐actin with cytochalasin D revealed that both CD44H and MT1‐MMP co‐localize closely with the actin cytoskeleton, dependent on the cytoplasmic tail of CD44H. Thus, CD44H appears to act as a linker that connects MT1‐MMP to the actin cytoskeleton and to play a role in directing MT1‐MMP to the migration front. The PEX domain of MT1‐MMP was indispensable in promoting cell migration and CD44H shedding.


Journal of Biological Chemistry | 1999

MEMBRANE TYPE 4 MATRIX METALLOPROTEINASE (MT4-MMP, MMP-17) IS A GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED PROTEINASE

Yoshifumi Itoh; Masahiro Kajita; Hiroaki Kinoh; Hidetoshi Mori; Akiko Okada; Motoharu Seiki

Among the five membrane-type matrix metalloproteinases (MT-MMPs), MT1-, MT2-, MT3-, and MT5-MMPs have about a 20-amino acid cytoplasmic tail following the transmembrane domain. In contrast, a putative transmembrane domain of MT4-MMP locates at the very C-terminal end, and the expected cytoplasmic tail is very short or nonexistent. Such sequences often act as a glycosylphosphatidylinositol (GPI) anchoring signal rather than as a transmembrane domain. We thus examined the possibility that MT4-MMP is a GPI-anchored proteinase. Our results showed that [3H]ethanolamine, which can be incorporated into the GPI unit, specifically labeled the MT4-MMP C-terminal end in a sequence-dependent manner. In addition, phosphatidylinositol-specific phospholipase C treatment released the MT4-MMP from the surface of transfected cells. These results indicate that MT4-MMP is the first GPI-anchored proteinase in the MMP family. During cultivation of the transfected cells, MT4-MMP appeared to be shed from the cell surface by the action of an endogenous metalloproteinase. GPI anchoring of MT4-MMP on the cell surface indicates a unique biological function and character for this proteinase.


The EMBO Journal | 2008

Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

Jordi Alcaraz; Ren Xu; Hidetoshi Mori; Celeste M. Nelson; Rana Mroue; Virginia A. Spencer; Doug Brownfield; Derek C. Radisky; Carlos Bustamante; Mina J. Bissell

In the mammary gland, epithelial cells are embedded in a ‘soft’ environment and become functionally differentiated in culture when exposed to a laminin‐rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for β‐casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of β‐casein expression required both laminin signalling and a ‘soft’ extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of β‐casein expression and non‐biomimetic intracellular elasticity. Our data indicate that tissue‐specific gene expression is controlled by both the tissues’ unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Coherent angular motion in the establishment of multicellular architecture of glandular tissues

Kandice Tanner; Hidetoshi Mori; Rana Mroue; Alexandre Bruni-Cardoso; Mina J. Bissell

Glandular tissues form ducts (tubes) and acini (spheres) in multicellular organisms. This process is best demonstrated in the organization of the ductal tree of the mammary gland and in 3D models of morphogenesis in culture. Here, we asked a fundamental question: How do single adult epithelial cells generate polarized acini when placed in a surrogate basement membrane 3D gel? Using human breast epithelial cells from either reduction mammoplasty or nonmalignant breast cell lines, we observed a unique cellular movement where single cells undergo multiple rotations and then maintain it cohesively as they divide to assemble into acini. This coherent angular motion (CAMo) was observed in both primary cells and breast cell lines. If CAMo was disrupted, the final geometry was not a sphere. The malignant counterparts of the human breast cell lines in 3D were randomly motile, did not display CAMo, and did not form spheres. Upon “phenotypic reversion” of malignant cells, both CAMo and spherical architecture were restored. We show that cell-cell adhesion and tissue polarity are essential for the formation of acini and link the functional relevance of CAMo to the establishment of spherical architecture rather than to multicellular aggregation or growth. We propose that CAMo is an integral step in the formation of the tissue architecture and that its disruption is involved in malignant transformation.


Experimental Cell Research | 2010

Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms

Cyrus M. Ghajar; Suraj Kachgal; Ekaterina Kniazeva; Hidetoshi Mori; Sylvain V. Costes; Steven C. George; Andrew J. Putnam

During angiogenesis, endothelial cells (ECs) degrade their surrounding extracellular matrix (ECM) to facilitate invasion. How interactions between ECs and other cells within their microenvironment facilitate this process is only partially understood. We have utilized a tractable 3D co-culture model to investigate the proteolytic mechanisms by which pre-committed or more highly committed mesenchymal cells stimulate capillary formation. On their own, ECs invade their surrounding matrix, but do not form capillaries. However, in the presence of either mesenchymal stem cells (MSCs) or fibroblasts, ECs form polarized, tubular structures that are intimately associated with mesenchymal cells. Further, ECs up-regulate gene expression of several extracellular proteases upon co-culture with either mesenchymal cell type. The administration of both broad spectrum and specific protease inhibitors demonstrated that MSC-stimulated capillary formation relied solely on membrane-type matrix metalloproteinases (MT-MMPs) while fibroblast-mediated sprouting proceeded independent of MMP inhibition unless the plasminogen activator/plasmin axis was inhibited in concert. While other studies have established a role for the ECM itself in dictating proteolysis and matrix degradation during capillary morphogenesis, the present study illustrates that heterotypic cellular interactions within the microenvironment can direct the proteolytic mechanisms required for capillary formation.


Oncogene | 2005

CD44 binding through the hemopexin-like domain is critical for its shedding by membrane-type 1 matrix metalloproteinase

Naoko Suenaga; Hidetoshi Mori; Yoshifumi Itoh; Motoharu Seiki

Membrane-type 1 matrix metalloproteinase (MT1-MMP) is a potent modulator of pericellular environment through its proteolytic activity and promotes migration, invasion, and proliferation of tumor cells. During cell migration, MT1-MMP binds to CD44H, a major hyaluronan receptor, through the hemopexin-like (HPX) domain and localizes at the migration front. MT1-MMP is also responsible for shedding CD44H, which supports CD44H-mediated cell migration. In this study, we asked whether the binding of MT1-MMP to CD44H is a prerequisite step for the successive shedding. Deletion of the HPX domain deprived MT1-MMP of its shedding activity. Furthermore, disruption of the CD44H/MT1-MMP complex by overexpressing the HPX fragments resulted in inhibition of the shedding. Thus, the CD44H in the complex appears to be the direct substrate of MT1-MMP for shedding. Interestingly, other members of the MT-MMP family showed varied extents of CD44H shedding. Domain swapping between MT1-MMP and other MT-MMPs revealed that the ability of the HPX domains to bind CD44H is conserved among them. However, the shedding activity was different depending on the catalytic domains. The conserved binding ability of the HPX domains suggests that CD44H may act as a core molecule assembling multiple MT-MMPs on the cell surface.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Self-organization of engineered epithelial tubules by differential cellular motility

Hidetoshi Mori; Nikolce Gjorevski; Jamie L. Inman; Mina J. Bissell; Celeste M. Nelson

Patterning of developing tissues arises from a number of mechanisms, including cell shape change, cell proliferation, and cell sorting from differential cohesion or tension. Here, we reveal that differences in cell motility can also lead to cell sorting within tissues. Using mosaic engineered mammary epithelial tubules, we found that cells sorted depending on their expression level of the membrane-anchored collagenase matrix metalloproteinase (MMP)-14. These rearrangements were independent of the catalytic activity of MMP14 but absolutely required the hemopexin domain. We describe a signaling cascade downstream of MMP14 through Rho kinase that allows cells to sort within the model tissues. Cell speed and persistence time were enhanced by MMP14 expression, but only the latter motility parameter was required for sorting. These results indicate that differential directional persistence can give rise to patterns within model developing tissues.


Current Biology | 2013

Patterned Collagen Fibers Orient Branching Mammary Epithelium through Distinct Signaling Modules

Douglas G. Brownfield; Gautham Venugopalan; Alvin T. Lo; Hidetoshi Mori; Kandice Tanner; Daniel A. Fletcher; Mina J. Bissell

For decades, the work of cell and developmental biologists has demonstrated the striking ability of the mesenchyme and the stroma to instruct epithelial form and function in the mammary gland, but the role of extracellular matrix (ECM) molecules in mammary pattern specification has not been elucidated. Here, we show that stromal collagen I (Col-I) fibers in the mammary fat pad are axially oriented prior to branching morphogenesis. Upon puberty, the branching epithelium orients along these fibers, thereby adopting a similar axial bias. To establish a causal relationship from Col-I fiber to epithelial orientation, we embedded mammary organoids within axially oriented Col-I fiber gels and observed dramatic epithelial co-orientation. Whereas a constitutively active form of Rac1, a molecule implicated in cell motility, prevented a directional epithelial response to Col-I fiber orientation, inhibition of the RhoA/Rho-associated kinase (ROCK) pathway did not. However, time-lapse studies revealed that, within randomly oriented Col-I matrices, the epithelium axially aligns fibers at branch sites via RhoA/ROCK-mediated contractions. Our data provide an explanation for how the stromal ECM encodes architectural cues for branch orientation as well as how the branching epithelium interprets and reinforces these cues through distinct signaling processes.


Journal of Mammary Gland Biology and Neoplasia | 2012

Constructing Three-Dimensional Models to Study Mammary Gland Branching Morphogenesis and Functional Differentiation

Alvin T. Lo; Hidetoshi Mori; Joni D. Mott; Mina J. Bissell

Tissue organogenesis is directed by both intercellular interactions and communication with the surrounding microenvironment. When cells are cultured on two-dimensional plastic substrata (2D), important signals controlling programs of cell proliferation, metabolism, differentiation and death responsible for the formation of correct tissue-specific architecture and function are lost. Designing three-dimensional (3D), physiologically relevant culture models, we can recapitulate some crucial aspects of the dynamic and reciprocal signaling necessary for establishing and maintaining tissue specific morphogenic programs. Here we briefly describe the details of robust methods for culturing mouse primary mammary organoids in 3D gels of different extracellular matrices and describe techniques for analyzing the resulting structures. These designer microenvironments are useful for both understanding branching morphogenesis and signaling integrations, but also for analysis of individual susceptibilities and drug testing.

Collaboration


Dive into the Hidetoshi Mori's collaboration.

Top Co-Authors

Avatar

Mina J. Bissell

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrus M. Ghajar

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alvin T. Lo

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jamie L. Bascom

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge