Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideyoshi Yoshioka is active.

Publication


Featured researches published by Hideyoshi Yoshioka.


Environmental Microbiology | 2011

Evidence for syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the high-temperature petroleum reservoir of Yabase oil field (Japan).

Daisuke Mayumi; Hanako Mochimaru; Hideyoshi Yoshioka; Susumu Sakata; Haruo Maeda; Yoshihiro Miyagawa; Masayuki Ikarashi; Mio Takeuchi; Yoichi Kamagata

The methanogenic communities and pathways in a high-temperature petroleum reservoir were investigated through incubations of the production water and crude oil, combined with radiotracer experiments and molecular biological analyses. The incubations were conducted without any substrate amendment and under high-temperature and pressurized conditions that mimicked the in situ environment (55°C, 5 MPa). Changes in methane and acetate concentrations during the incubations indicated stoichiometric production of methane from acetate. Rates of hydrogenotrophic methanogenesis measured using [(14)C]-bicarbonate were 42-68 times those of acetoclastic methanogenesis measured using [2-(14) C]-acetate, implying the dominance of methane production by syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis in the environment. 16S rRNA gene sequence analyses of the incubated production water showed bacterial communities dominated by the genus Thermacetogenium, known as a thermophilic syntrophic acetate-oxidizing bacterium, and archaeal communities dominated by thermophilic hydrogenotrophic methanogens belonging to the genus Methanothermobacter. Furthermore, group-specific real-time PCR assays revealed that 16S rRNA gene copy numbers of the hydrogenotrophic methanogens affiliated with the order Methanobacteriales were almost identical to those of archaeal 16S rRNA genes. This study demonstrates that syntrophic acetate oxidation is the main methanogenic pathway in a high-temperature petroleum reservoir.


Geomicrobiology Journal | 2007

Methanogen Diversity in Deep Subsurface Gas-Associated Water at the Minami-Kanto Gas Field in Japan

Hanako Mochimaru; Hiroo Uchiyama; Hideyoshi Yoshioka; Hiroyuki Imachi; Toshihiro Hoaki; Hideyuki Tamaki; Kohei Nakamura; Yuji Sekiguchi; Yoichi Kamagata

Methanogen diversity and methanogenic potential in formation water obtained from the Minami-kanto gas field in Japan were investigated by using 16S rRNA gene libraries and culture-based enrichment methods, respectively. This region is the largest gas field that produces natural gases of dissolved-in-water type in Japan. Although the microbial population density was below statistical quantification limits (1 × 104 cells ml−1), autofluorescent coccoid and rod-shaped cells indicative of methanogens were observed. The represented genera in the archaeal 16S rRNA genes libraries were comprised of Methanobacterium, Methanospirillum, Methanocalculus, Methanococcus, Methanolobus and Methanosaeta. The dominant archaeal sequences were related to the hydrogenotrophic methanogens in the genus Methanobacterium. Of the methanogenic substrates tested using the formation water-based medium,H2-CO2 yielded the highest methane production. These results strongly suggest that the formation water of the Pleistocene strata in the gas fields harbor viable hydrogenotrophic methanogens and have possibly been making a contribution to ongoing methanogenesis.


Science | 2016

Methane production from coal by a single methanogen.

Daisuke Mayumi; Hanako Mochimaru; Hideyuki Tamaki; Kyosuke Yamamoto; Hideyoshi Yoshioka; Yuichiro Suzuki; Yoichi Kamagata; Susumu Sakata

Microbes make methane from coal Methane associated with coal beds is an important global resource of natural gas. Much of the methane in coal comes from microbial methanogenesis. Mayumi et al. characterized a strain of Methermicoccus shengliensis that, unexpectedly, is capable of making methane from the dozens of methoxylated aromatic compounds found in a variety of coal types (see the Perspective by Welte). Isotope tracer experiments showed that this organism could also incorporate carbon dioxide into methane. Science, this issue p. 222; see also p. 184 Microbes can produce methane directly from the complex aromatic compounds found in a variety of coal substrates. Coal-bed methane is one of the largest unconventional natural gas resources. Although microbial activity may greatly contribute to coal-bed methane formation, it is unclear whether the complex aromatic organic compounds present in coal can be used for methanogenesis. We show that deep subsurface–derived Methermicoccus methanogens can produce methane from more than 30 types of methoxylated aromatic compounds (MACs) as well as from coals containing MACs. In contrast to known methanogenesis pathways involving one- and two-carbon compounds, this “methoxydotrophic” mode of methanogenesis couples O-demethylation, CO2 reduction, and possibly acetyl–coenzyme A metabolism. Because MACs derived from lignin may occur widely in subsurface sediments, methoxydotrophic methanogenesis would play an important role in the formation of natural gas not limited to coal-bed methane and in the global carbon cycle.


PLOS ONE | 2014

A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor

Masataka Aoki; Masayuki Ehara; Yumi Saito; Hideyoshi Yoshioka; Masayuki Miyazaki; Yayoi Saito; Ai Miyashita; Shuji Kawakami; Takashi Yamaguchi; Akiyoshi Ohashi; Takuro Nunoura; Ken Takai; Hiroyuki Imachi

Anaerobic oxidation of methane (AOM) in marine sediments is an important global methane sink, but the physiological characteristics of AOM-associated microorganisms remain poorly understood. Here we report the cultivation of an AOM microbial community from deep-sea methane-seep sediment using a continuous-flow bioreactor with polyurethane sponges, called the down-flow hanging sponge (DHS) bioreactor. We anaerobically incubated deep-sea methane-seep sediment collected from the Nankai Trough, Japan, for 2,013 days in the bioreactor at 10°C. Following incubation, an active AOM activity was confirmed by a tracer experiment using 13C-labeled methane. Phylogenetic analyses demonstrated that phylogenetically diverse Archaea and Bacteria grew in the bioreactor. After 2,013 days of incubation, the predominant archaeal components were anaerobic methanotroph (ANME)-2a, Deep-Sea Archaeal Group, and Marine Benthic Group-D, and Gammaproteobacteria was the dominant bacterial lineage. Fluorescence in situ hybridization analysis showed that ANME-1 and -2a, and most ANME-2c cells occurred without close physical interaction with potential bacterial partners. Our data demonstrate that the DHS bioreactor system is a useful system for cultivating fastidious methane-seep-associated sedimentary microorganisms.


Environmental Microbiology | 2011

A distinct freshwater‐adapted subgroup of ANME‐1 dominates active archaeal communities in terrestrial subsurfaces in Japan

Mio Takeuchi; Hideyoshi Yoshioka; Yuna Seo; Susumu Tanabe; Hideyuki Tamaki; Yoichi Kamagata; Hiroshi A. Takahashi; Shun-ichiro Igari; Daisuke Mayumi; Susumu Sakata

Anaerobic methane-oxidizing archaea (ANME) are known to play an important role in methane flux, especially in marine sediments. The 16S rRNA genes of ANME have been detected in terrestrial freshwater subsurfaces. However, it is unclear whether ANME are actively involved in methane oxidation in these environments. To address this issue, Holocene sediments in the subsurface of the Kanto Plain in Japan were collected for biogeochemical and molecular analysis. The potential activity of the anaerobic oxidation of methane (AOM) (0.38-3.54 nmol cm⁻³ day⁻¹) was detected in sediment slurry incubation experiments with a (13) CH(4) tracer. Higher AOM activity was observed in low-salinity treatment compared with high-salinity condition (20‰), which supports the adaptation of ANME in freshwater habitats. The 16S rRNA sequence analysis clearly revealed the presence of a distinct subgroup of ANME-1, designated ANME-1a-FW. Phylogenetic analysis of the mcrA genes also implied the presence of the distinct subgroup in ANME-1. ANME-1a-FW was found to be the most dominant active group in the archaeal communities on the basis of 16S rRNA analysis (75.0-93.8% of total archaeal 16S rRNA clones). Sulfate-reducing bacteria previously known as the syntrophic bacterial partners of ANME-1 was not detected. Our results showed that ANME-1a-FW is adapted to freshwater habitats and is responsible for AOM in terrestrial freshwater subsurface environments.


Eos, Transactions American Geophysical Union | 2006

Gas hydrate transect across Northern Cascadia Margin

Michael Riedel; Timothy S. Collett; Mitchell J. Malone; Fumio Akiba; Marie-Madeleine Blanc-Valleron; Michelle Ellis; Gilles Guerin; Yoshitaka Hashimoto; Verena B Heuer; Yowsuke Higashi; Melanie Holland; Peter Jackson; Masanori Kaneko; Miriam Kastner; Ji-Hoon Kim; Hiroko Kitajima; Phil Long; Alberto Malinverno; Greg Myers; Leena Palekar; John W. Pohlman; Peter Schultheiss; Barbara M.A. Teichert; Marta E. Torres; Anne M. Trehu; Jiasheng Wang; Uli Wortmann; Hideyoshi Yoshioka

Gas hydrate is a solid compound mainly comprised of methane and water that is stable under low temperature and high pressure conditions. Usually found in offshore environments with water depths exceeding about 500 meters and in arctic regions associated with permafrost, gas hydrates form an efficient storage system for natural gas. Hence, they may represent an important future energy resource [e.g., Kvenvolden, 1988]. Gas hydrates also form a natural geo-hazard, and may play a significant role in global climate change [e.g., Dillon et al., 2001].


International Journal of Systematic and Evolutionary Microbiology | 2014

Methanohalophilus levihalophilus sp. nov., a slightly halophilic, methylotrophic methanogen isolated from natural gas-bearing deep aquifers, and emended description of the genus Methanohalophilus

Taiki Katayama; Hideyoshi Yoshioka; Hanako Mochimaru; Xian-Ying Meng; Yoshiyuki Muramoto; Jun Usami; Hidefumi Ikeda; Yoichi Kamagata; Susumu Sakata

A mesophilic, slightly halophilic, obligately methylotrophic, methanogenic archaeon, designated strain GTA13(T), was isolated from natural gas-bearing confined aquifers in the Minami-Kanto gas field, Japan. The cells were non-motile, slightly irregular cocci, 0.7-1.0 µm in diameter and occurred singly, in pairs or as small aggregates. The cells grew with tri- or dimethylamine but not with H2/CO2, formate, acetate, methanol or dimethyl sulphide. Vitamins, sodium and magnesium were required for growth. Optimal growth occurred at pH 7.0-7.5, 35 °C, 0.35-0.40 M NaCl and 15-50 mM MgCl2. The NaCl range for growth was 0.2-1.3 M. The DNA G+C content was 43.7 mol%. Strain GTA13(T) showed highest levels of 16S rRNA gene sequence similarity with Methanohalophilus portucalensis FDF-1(T) (96.4% sequence similarity) and Methanohalophilus halophilus DSM 3094(T) (96.0%). On the basis of physiological and phylogenetic features, strain GTA13(T) is considered to represent a novel species of the genus Methanohalophilus, for which the name Methanohalophilus levihalophilus sp. nov. is proposed. The type strain is GTA13(T) ( = NBRC 110099(T) = DSM 28452(T)). An emended description of the genus Methanohalophilus is also proposed.


Journal of Analytical and Applied Pyrolysis | 2004

Analysis of organic compounds in coal macerals by infrared laser micropyrolysis

Hideyoshi Yoshioka; Nobuyori Takeda

Abstract Laser micropyrolysis combined with gas chromatography–mass spectrometry (GC–MS) was used for analyzing organic compounds in three macerals of an immature, sub-bituminous coal: telocollinite, degradinite, and cutinite. To limit thermal effects on the area surrounding the irradiation point, we shortened the irradiation duration by using a pulsed laser, and we used an aperture to cut off the edge of the laser beam. Aromatic hydrocarbons such as phenol, cresol, and methylguaiacol were the main compounds detected in telocollinite. Prist-1-ene, a series of n -alkanes/ n -alkenes, and aromatic compounds such as phenol and cresol were detected in degradinite; and cutinite generated compounds similar to those found in degradinite. We concluded that prist-1-ene and n -alkanes/ n -alkenes were generated from wavy layers in the cutinite. The morphological changes observed after irradiation and the fact that the generated organic compounds changed with the maceral species indicated that the thermal effects of irradiation were restricted to the image area and that the pyrolysis reaction and thermal evaporation of the organic molecules in the macerals were limited as well.


The ISME Journal | 2015

Physicochemical impacts associated with natural gas development on methanogenesis in deep sand aquifers

Taiki Katayama; Hideyoshi Yoshioka; Yoshiyuki Muramoto; Jun Usami; Kazuhiro Fujiwara; Satoshi Yoshida; Yoichi Kamagata; Susumu Sakata

The Minami-Kanto gas field, where gases are dissolved in formation water, is a potential analogue for a marine gas hydrate area because both areas are characterized by the accumulation of microbial methane in marine turbidite sand layers interbedded with mud layers. This study examined the physicochemical impacts associated with natural gas production and well drilling on the methanogenic activity and composition in this gas field. Twenty-four gas-associated formation water samples were collected from confined sand aquifers through production wells. The stable isotopic compositions of methane in the gases indicated their origin to be biogenic via the carbonate reduction pathway. Consistent with this classification, methanogenic activity measurements using radiotracers, culturing experiments and molecular analysis of formation water samples indicated the predominance of hydrogenotrophic methanogenesis. The cultivation of water samples amended only with methanogenic substrates resulted in significant increases in microbial cells along with high-yield methane production, indicating the restricted availability of substrates in the aquifers. Hydrogenotrophic methanogenic activity increased with increasing natural gas production from the corresponding wells, suggesting that the flux of substrates from organic-rich mudstones to adjacent sand aquifers is enhanced by the decrease in fluid pressure in sand layers associated with natural gas/water production. The transient predominance of methylotrophic methanogens, observed for a few years after well drilling, also suggested the stimulation of the methanogens by the exposure of unutilized organic matter through well drilling. These results provide an insight into the physicochemical impacts on the methanogenic activity in biogenic gas deposits including marine gas hydrates.


Journal of Bioscience and Bioengineering | 2018

Microbial community structure in deep natural gas-bearing aquifers subjected to sulfate-containing fluid injection

Taiki Katayama; Hideyoshi Yoshioka; Toshiro Yamanaka; Mio Takeuchi; Yoshiyuki Muramoto; Jun Usami; Hidefumi Ikeda; Susumu Sakata

In the natural gas field located in central Japan, high concentrations of natural gases and iodide ions are dissolved in formation water and commercially produced in deep aquifers. In the iodine recovery process, the produced formation water is amended with sulfate, and this fluid is injected into gas-bearing aquifers, which may lead to infrastructure corrosion by hydrogen sulfide. In this study, we examined the microbial community in aquifers subjected to sulfate-containing fluid injection. Formation water samples were collected from production wells located at different distances from the injection wells. The chemical analysis showed that the injection fluid contained oxygen, nitrate, nitrite and sulfate, in contrast to the formation water, which had previously been shown to be depleted in these components. Sulfur isotopic analysis indicated that sulfate derived from the injection fluid was present in the sample collected from near the injection wells. Quantitative and sequencing analysis of dissimilatory sulfite reductase and 16S rRNA genes revealed that sulfate-reducing bacteria (SRB), sulfur-oxidizing bacteria, and anaerobic methanotrophic archaea (ANME) in the wells located near injection wells were more abundant than those in wells located far from the injection wells, suggesting that fluid injection stimulated these microorganisms through the addition of oxygen, nitrate, nitrite and sulfate to the methane-rich aquifers. The predominant taxa were assigned to the ANME-2 group, its sulfate-reducing partner SEEP-SRB1 cluster and sulfur-oxidizing Epsilonproteobacteria. These results provide important insights for future studies to support the development of natural gas and iodine resources in Japan.

Collaboration


Dive into the Hideyoshi Yoshioka's collaboration.

Top Co-Authors

Avatar

Susumu Sakata

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yoichi Kamagata

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hanako Mochimaru

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hideyuki Tamaki

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Daisuke Mayumi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Taiki Katayama

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mio Takeuchi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge