Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideyuki Mizuno is active.

Publication


Featured researches published by Hideyuki Mizuno.


Physical Review E | 2013

Measuring spatial distribution of the local elastic modulus in glasses.

Hideyuki Mizuno; Stefano Mossa; Jean-Louis Barrat

Glasses exhibit spatially inhomogeneous elastic properties, which can be investigated by measuring their elastic moduli at a local scale. Various methods to evaluate the local elastic modulus have been proposed in the literature. A first possibility is to measure the local stress-local strain curve and to obtain the local elastic modulus from the slope of the curve or, equivalently, to use a local fluctuation formula. Another possible route is to assume an affine strain and to use the applied global strain instead of the local strain for the calculation of the local modulus. Most recently, a third technique has been introduced, which is easy to be implemented and has the advantage of low computational cost. In this contribution, we compare these three approaches by using the same model glass and reveal the differences among them caused by the nonaffine deformations.


Journal of Chemical Physics | 2014

Molecular dynamics simulation of electrokinetic flow of an aqueous electrolyte solution in nanochannels

Hiroaki Yoshida; Hideyuki Mizuno; Tomoyuki Kinjo; Hitoshi Washizu; Jean-Louis Barrat

Electrokinetic flows of an aqueous NaCl solution in nanochannels with negatively charged surfaces are studied using molecular dynamics simulations. The four transport coefficients that characterize the response to weak electric and pressure fields, namely, the coefficients for the electrical current in response to the electric field (M(jj)) and the pressure field (M(jm)), and those for the mass flow in response to the same fields (M(mj) and M(mm)), are obtained in the linear regime using a Green-Kubo approach. Nonequilibrium simulations with explicit external fields are also carried out, and the current and mass flows are directly obtained. The two methods exhibit good agreement even for large external field strengths, and Onsagers reciprocal relation (M(jm) = M(mj)) is numerically confirmed in both approaches. The influence of the surface charge density on the flow is also considered. The values of the transport coefficients are found to be smaller for larger surface charge density, because the counter-ions strongly bound near the channel surface interfere with the charge and mass flows. A reversal of the streaming current and of the reciprocal electro-osmotic flow, with a change of sign of M(mj) due to the excess co-ions, takes places for very high surface charge density.


Scientific Reports | 2015

Beating the amorphous limit in thermal conductivity by superlattices design.

Hideyuki Mizuno; Stefano Mossa; Jean-Louis Barrat

The value measured in the amorphous structure with the same chemical composition is often considered as a lower bound for the thermal conductivity of any material: the heat carriers are strongly scattered by disorder, and their lifetimes reach the minimum time scale of thermal vibrations. An appropriate design at the nano-scale, however, may allow one to reduce the thermal conductivity even below the amorphous limit. In the present contribution, using molecular-dynamics simulation and the Green-Kubo formulation, we study systematically the thermal conductivity of layered phononic materials (superlattices), by tuning different parameters that can characterize such structures. We have discovered that the key to reach a lower-than-amorphous thermal conductivity is to block almost completely the propagation of the heat carriers, the superlattice phonons. We demonstrate that a large mass difference in the two intercalated layers, or weakened interactions across the interface between layers result in materials with very low thermal conductivity, below the values of the corresponding amorphous counterparts.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Acoustic excitations and elastic heterogeneities in disordered solids

Hideyuki Mizuno; Stefano Mossa; Jean-Louis Barrat

Significance What makes the difference when sound propagation is investigated in a crystal or in a glass? One hundred years ago, Debye rationalized the former case in terms of phonons. In contrast, years of effort have failed to provide a convincing picture for vibrations in disordered solids. We provide a contribution to this issue by reporting clear evidence that a mechanical feature, elastic heterogeneity at the nanoscale, profoundly affects the main properties and even the very nature of sound waves. Our picklock is the numerical study of a toy model that, at fixed macroscopic thermodynamical conditions, allows to investigate in a unified framework the perfect crystal, increasingly defective ordered phases, and the fully developed amorphous state. In the recent years, much attention has been devoted to the inhomogeneous nature of the mechanical response at the nanoscale in disordered solids. Clearly, the elastic heterogeneities that have been characterized in this context are expected to strongly affect the nature of the sound waves which, in contrast to the case of perfect crystals, cannot be completely rationalized in terms of phonons. Building on previous work on a toy model showing an amorphization transition, we investigate the relationship between sound waves and elastic heterogeneities in a unified framework by continuously interpolating from the perfect crystal, through increasingly defective phases, to fully developed glasses. We provide strong evidence of a direct correlation between sound wave features and the extent of the heterogeneous mechanical response at the nanoscale.


Physical Review E | 2011

Dynamical heterogeneity in a highly supercooled liquid: consistent calculations of correlation length, intensity, and lifetime.

Hideyuki Mizuno; Ryoichi Yamamoto

We have investigated dynamical heterogeneity in a highly supercooled liquid using molecular-dynamics simulations in three dimensions. Dynamical heterogeneity can be characterized by three quantities: correlation length ξ(4), intensity χ(4), and lifetime τ(hetero). We evaluated all three quantities consistently from a single order parameter. In a previous study [H. Mizuno and R. Yamamoto, Phys. Rev. E 82, 030501(R) (2010)], we examined the lifetime τ(hetero)(t) in two time intervals t = τ(α) and τ(ngp), where τ(α) is the α-relaxation time and τ(ngp) is the time at which the non-Gaussian parameter of the Van Hove self-correlation function is maximized. In the present study, in addition to the lifetime τ(hetero)(t), we evaluated the correlation length ξ(4)(t) and the intensity χ({4)(t) from the same order parameter used for the lifetime τ(hetero)(t). We found that as the temperature decreases, the lifetime τ(hetero)(t) grows dramatically, whereas the correlation length ξ(4)(t) and the intensity χ(4)(t) increase slowly compared to τ(hetero)(t) or plateaus. Furthermore, we investigated the lifetime τ(hetero)(t) in more detail. We examined the time-interval dependence of the lifetime τ(hetero)(t) and found that as the time interval t increases, τ(hetero)(t) monotonically becomes longer and plateaus at the relaxation time of the two-point density correlation function. At the large time intervals for which τ(hetero)(t) plateaus, the heterogeneous dynamics migrate in space with a diffusion mechanism, such as the particle density.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Continuum limit of the vibrational properties of amorphous solids

Hideyuki Mizuno; Hayato Shiba; Atsushi Ikeda

Significance The thermal properties of crystalline solids follow universal laws that are explained by theories based on phonons. Amorphous solids are also characterized by universal laws that are, however, anomalous with respect to their crystalline counterparts. These anomalies begin to emerge at very low temperatures, suggesting that the vibrational properties of amorphous solids differ from phonons, even in the continuum limit. In this work, we reveal that phonons coexist with soft localized modes in the continuum limit of amorphous solids. Importantly, we discover that the phonons follow the Debye law, whereas the soft localized modes follow another universal non-Debye law. Our findings provide a firm theoretical basis for explaining the thermal anomalies of amorphous solids. The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.


Physical Review E | 2010

Lifetime of dynamical heterogeneity in a highly supercooled liquid

Hideyuki Mizuno; Ryoichi Yamamoto

We numerically examine dynamical heterogeneity in a highly supercooled three-dimensional liquid via molecular-dynamics simulations. To define the local dynamics, we consider two time intervals: τ(α) and τ(ngp). τ(α) is the α relaxation time, and τ(ngp) is the time at which non-gaussian parameter of the Van Hove self-correlation function is maximized. We determine the lifetimes of the heterogeneous dynamics in these two different time intervals, τ(hetero)(τ(α)) and τ(hetero)(τ(ngp)), by calculating the time correlation function of the particle dynamics, i.e., the four-point correlation function. We find that the difference between τ(hetero)(τ(α)) and τ(hetero)(τ(ngp)) increases with decreasing temperature. At low temperatures, τ(hetero)(τ(α)) is considerably larger than τ(α), while τ(hetero)(τ(ngp)) remains comparable to τ(α). Thus, the lifetime of the heterogeneous dynamics depends strongly on the time interval.


European Physical Journal E | 2012

Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state

Hideyuki Mizuno; Ryoichi Yamamoto

A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an effective temperature.


Journal of Chemical Physics | 2012

Dynamical heterogeneity in a highly supercooled liquid under a sheared situation.

Hideyuki Mizuno; Ryoichi Yamamoto

In the present study, we performed molecular dynamics simulations and investigated dynamical heterogeneity in a supercooled liquid under a steady shear flow. Dynamical heterogeneity can be characterized by three quantities: the correlation length ξ(4)(t), the intensity χ(4)(t), and the lifetime τ(hetero)(t). We quantified all three quantities by means of the correlation functions of the particle dynamics, i.e., the four-point correlation functions, which are extended to the sheared condition. Here, to define the local dynamics, we used two time intervals t = τ(α) and τ(ngp); τ(α) is the α-relaxation time, and τ(ngp) is the time at which the non-Gaussian parameter of the Van Hove self-correlation function is maximized. We discovered that all three quantities (ξ(4)(t), χ(4)(t), and τ(hetero)(t)) decrease as the shear rate γ of the steady shear flow increases. For the time interval t = τ(α), the scalings ξ(4)(τ(α))~γ(-0.08), χ(4)(τ(α))~γ(-0.26), and τ(hetero)(τ(α))~γ(-0.88) were obtained. The steady shear flow suppresses the heterogeneous structure as well as the lifetime of the dynamical heterogeneity. In addition, we demonstrated that all three quantities in the sheared non-equilibrium state can be mapped onto those in the equilibrium state through the α-relaxation time τ(α). This finding means that the same relation between τ(α) and three quantities holds in both the equilibrium state and the sheared non-equilibrium state and therefore proposes that the dynamical heterogeneity can play a similar role in the drastic change of τ(α) due to not only the temperature but also the shear rate.


Physical Review Letters | 2016

Spatial Distributions of Local Elastic Moduli Near the Jamming Transition.

Hideyuki Mizuno; Leonardo E. Silbert; Matthias Sperl

Recent progress on studies of the nanoscale mechanical responses in disordered systems has highlighted a strong degree of heterogeneity in the elastic moduli. In this contribution, using computer simulations, we study the elastic heterogeneities in athermal amorphous solids--composed of isotropic static sphere packings--near the jamming transition. We employ techniques based on linear response methods that are amenable to experimentation. We find that the local elastic moduli are randomly distributed in space and are described by Gaussian probability distributions, thereby lacking any significant spatial correlations, that persist all the way down to the transition point. However, the shear modulus fluctuations grow as the jamming threshold is approached, which is characterized by a new power-law scaling. Through this diverging behavior we are able to identify a characteristic length scale, associated with shear modulus heterogeneities, that distinguishes between bulk and local elastic responses.

Collaboration


Dive into the Hideyuki Mizuno's collaboration.

Top Co-Authors

Avatar

Jean-Louis Barrat

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefano Mossa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo E. Silbert

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge