Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideyuki Sakoda is active.

Publication


Featured researches published by Hideyuki Sakoda.


Journal of Endocrinology | 2015

Diet-induced obesity causes peripheral and central ghrelin resistance by promoting inflammation

Farhana Naznin; Koji Toshinai; T.M. Zaved Waise; Cherl NamKoong; Abu Saleh Md Moin; Hideyuki Sakoda; Masamitsu Nakazato

Ghrelin, a stomach-derived orexigenic peptide, transmits starvation signals to the hypothalamus via the vagus afferent nerve. Peripheral administration of ghrelin does not induce food intake in high fat diet (HFD)-induced obese mice. We investigated whether this ghrelin resistance was caused by dysfunction of the vagus afferent pathway. Administration (s.c.) of ghrelin did not induce food intake, suppression of oxygen consumption, electrical activity of the vagal afferent nerve, phosphorylation of ERK2 and AMP-activated protein kinase alpha in the nodose ganglion, or Fos expression in hypothalamic arcuate nucleus of mice fed a HFD for 12 weeks. Administration of anti-ghrelin IgG did not induce suppression of food intake in HFD-fed mice. Expression levels of ghrelin receptor mRNA in the nodose ganglion and hypothalamus of HFD-fed mice were reduced. Inflammatory responses, including upregulation of macrophage/microglia markers and inflammatory cytokines, occurred in the nodose ganglion and hypothalamus of HFD-fed mice. A HFD blunted ghrelin signaling in the nodose ganglion via a mechanism involving in situ activation of inflammation. These results indicate that ghrelin resistance in the obese state may be caused by dysregulation of ghrelin signaling via the vagal afferent.


American Journal of Physiology-endocrinology and Metabolism | 2015

DPP-IV inhibitor anagliptin exerts anti-inflammatory effects on macrophages, adipocytes, and mouse livers by suppressing NF-κB activation

Takanori Shinjo; Yusuke Nakatsu; Misaki Iwashita; Tomomi Sano; Hideyuki Sakoda; Hisamitsu Ishihara; Akifumi Kushiyama; Midori Fujishiro; Toshiaki Fukushima; Yoshihiro Tsuchiya; Hideaki Kamata; Fusanori Nishimura; Tomoichiro Asano

Dipeptidyl peptidase IV (DPP-IV) expression in visceral adipose tissue is reportedly increased in obese patients, suggesting an association of DPP-IV with inflammation. In this study, first, lipopolysaccharide (LPS)- or palmitate-induced elevations of inflammatory cytokine mRNA expressions in RAW264.7 macrophages were shown to be significantly suppressed by coincubation with a DPP-IV inhibitor, anagliptin (10 μM), despite low DPP-IV expression in the RAW264.7 cells. Regarding the molecular mechanism, LPS-induced degradation of IκBα and phosphorylations of p65, JNK, and p38, as well as NF-κB and AP-1 promoter activities, were revealed to be suppressed by incubation with anagliptin, indicating suppressive effects of anagliptin on both NF-κB and AP-1 signaling pathways. Anagliptin also acted on 3T3-L1 adipocytes, weakly suppressing the inflammatory cytokine expressions induced by LPS and TNFα. When 3T3-L1 and RAW cells were cocultured and stimulated with LPS, the effects of anagliptin on the suppression of cytokine expressions in 3T3-L1 adipocytes were more marked and became evident at the 10 μM concentration. Anti-inflammatory effects of anagliptin were also observed in vivo on the elevated hepatic and adipose expressions and serum concentrations of inflammatory cytokines in association with the suppression of hepatic NF-κB transcriptional activity in LPS-infused mice. Taking these observations together, the anti-inflammatory properties of anagliptin may be beneficial in terms of preventing exacerbation of diabetes and cardiovascular events.


European Journal of Pharmacology | 2017

Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice

Farhana Naznin; Hideyuki Sakoda; Tadashi Okada; Hironobu Tsubouchi; T.M. Zaved Waise; Kenji Arakawa; Masamitsu Nakazato

&NA; Chronic inflammation in systemic organs, such as adipose tissue, nodose ganglion, hypothalamus, and skeletal muscles, is closely associated with obesity and diabetes mellitus. Because sodium glucose cotransporter 2 (SGLT2) inhibitors exert both anti‐diabetic and anti‐obesity effects by promoting urinary excretion of glucose and subsequent caloric loss, we investigated the effect of canagliflozin, an SGLT2 inhibitor, on obesity‐induced inflammation in neural tissues and skeletal muscles of mice. High‐fat diet (HFD)‐fed male C57BL/6J mice were treated with canagliflozin for 8 weeks. Canagliflozin attenuated the HFD‐mediated increases in body weight, liver weight, and visceral and subcutaneous fat weight. Additionally, canagliflozin decreased blood glucose as well as the fat, triglyceride, and glycogen contents of the liver. Along with these metabolic corrections, canagliflozin attenuated the increases in the mRNA levels of the proinflammatory biomarkers Iba1 and Il6 and the number of macrophages/microglia in the nodose ganglion and hypothalamus. In the skeletal muscle of HFD‐fed obese mice, canagliflozin decreased inflammatory cytokine levels, macrophage accumulation, and the mRNA level of the specific atrophic factor atrogin‐1. Canagliflozin also increased the mRNA level of insulin‐like growth factor 1, protected against muscle mass loss, and restored the contractile force of muscle. These findings suggested that SGLT2 inhibition disrupts the vicious cycle of obesity and inflammation, not only by promoting caloric loss, but also by suppression of obesity‐related inflammation in both the nervous system and skeletal muscle.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model

Yusuke Nakatsu; Yasuyuki Seno; Akifumi Kushiyama; Hideyuki Sakoda; Midori Fujishiro; Aya Katasako; Keiichi Mori; Yasuka Matsunaga; Toshiaki Fukushima; Ryuhei Kanaoka; Takeshi Yamamotoya; Hideaki Kamata; Tomoichiro Asano

Xanthine oxidase (XO) is an enzyme involved in the production of uric acid (UA) from purine nucleotides. Numerous recent studies have revealed the likelihood of metabolic syndrome including nonalcoholic fatty liver disease (NAFLD) or steatohepatitis (NASH) to be related to hyperuricemia. However, it remains unclear whether elevated serum UA during the development of NAFLD or NASH is a cause or a consequence of these diseases. In this study, the XO inhibitor febuxostat was administered to two types of NASH model mice. Febuxostat exerted a strong protective effect against NASH development induced by a high-fat diet containing trans fatty acid (HFDT). In contrast, methionine choline-deficient-diet-induced NASH development not accompanied by hyperuricemia showed no UA normalization, suggesting that the ameliorating effect of febuxostat occurs via the normalization of hyperuricemia itself and/or accompanying molecular mechanism(s) such as oxidative stress. In the HFDT-fed mice, hyperuricemia, elevated alanine aminotransferase, and increased Tunnel-positive cells in the liver were normalized by febuxostat administration. In addition, upregulation of fatty acid oxidation-related genes, fibrotic change, and increases in collagen deposition, inflammatory cytokine expressions, and lipid peroxidation in the HFDT-fed mice were also normalized by febuxostat administration. Taken together, these observations indicate that administration of febuxostat has a protective effect against HFDT-induced NASH development, suggesting the importance of XO in its pathogenesis. Thus XO inhibitors are potentially potent therapies for patients with NASH, particularly that associated with hyperuricemia.


Neuroscience Letters | 2018

Analysis of peripheral ghrelin signaling via the vagus nerve in ghrelin receptor–restored GHSR-null mice

Tadashi Okada; T.M. Zaved Waise; Koji Toshinai; Yuichiro Mita; Hideyuki Sakoda; Masamitsu Nakazato

The vagus nerve connects peripheral organs to the central nervous system (CNS), and gastrointestinal hormones transmit their signals to the CNS via the vagal afferent nerve. Ghrelin, a gastric-derived orexigenic peptide, stimulates food intake by transmitting starvation signals via the vagus nerve. To understand peripheral ghrelin signaling via the vagus nerve, we investigated the ghrelin receptor (GHSR)-null mouse. For this purpose, we tried to produce mice in which GHSR was selectively expressed in the hindbrain and vagus nerve. GHSR was expressed in some nodose ganglion neurons in these mice, but GHSR-expressing neurons were less abundant than in wild-type mice. Intraperitoneal administration of ghrelin did not induce food intake or growth hormone release, but did increase blood glucose levels. Our findings suggest that the abundance of GHSR-expressing neurons in the nodose ganglion is critical for peripheral administration of ghrelin-induced food intake and growth hormone release via the vagus nerve.


Journal of the Endocrine Society | 2017

Conformational Change in the Ligand-Binding Pocket via a KISS1R Mutation (P147L) Leads to Isolated Gonadotropin-Releasing Hormone Deficiency

Koichiro Shimizu; Tadato Yonekawa; Morikatsu Yoshida; Mikiya Miyazato; Ayako Miura; Hideyuki Sakoda; Hideki Yamaguchi; Masamitsu Nakazato

Context: Kisspeptin receptor (KISS1R) is expressed in hypothalamic gonadotropin-releasing hormone neurons and responsible for pubertal onset and reproductive functions. KISS1R mutations remain a rare cause of congenital hypogonadotropic hypogonadism (CHH). Objective: The aim of this study was to identify the genetic cause of CHH in a patient and to functionally characterize a KISS1R mutation. Design: The patient was a 47-year-old Japanese man whose parents were first cousins. He lacked secondary sexual characteristics owing to normosmic CHH. Exon segments for the KISS1R gene in this patient were screened for mutations. Functional analyses were performed using HEK293 cells expressing KISS1R mutants. Molecular dynamics simulations were performed to compare the ligand-KISS1R mutant complex with those of wild-type KISS1R variants. Results: A homozygous mutation (c.440C>T, p.P147L) in KISS1R was identified. The P147L mutation did not affect either receptor expression level or subcellular localization in the recombinant expression system. Intracellular calcium measurements and cellular dielectric spectroscopy demonstrated that the P147L mutation impaired receptor function to an extent more severe than that of a previously reported L148S mutation. A receptor-ligand binding assay showed the P147L mutation causes a substantial loss of ligand-binding affinity. Molecular dynamics simulations revealed the P147L mutation decreases the contact surface area of the ligand-receptor complex in an expanded ligand-binding pocket. Conclusion: We identified a loss-of-function mutation in KISS1R associated with CHH. Our results demonstrated that the P147L mutation causes a severe phenotype and functional impairment resulting from the loss of ligand-binding affinity due to an expanded ligand-binding pocket.


Endocrine Journal | 2017

Clinical application of ghrelin for diabetic peripheral neuropathy

Hiroaki Ueno; Tomomi Shiiya; Kazuhiro Nagamine; Wakaba Tsuchimochi; Hideyuki Sakoda; Kazutaka Shiomi; Kenji Kangawa; Masamitsu Nakazato

Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes, and its progression significantly worsens the patients quality of life. Although several drugs are available for DPN, all of these provide only symptomatic relief. We investigated the therapeutic effects of ghrelin for DPN, based on its various physiological functions. Seven patients with type 2 diabetes with typical clinical signs and symptoms of DPN were hospitalized. Synthetic human ghrelin (1.0 μg/kg) was administered intravenously for 14 days. Motor nerve conduction velocity (MCV) of the posterior tibial nerve improved significantly after the treatment, compared to that at baseline (35.1 ± 1.8 to 38.6 ± 1.8 m/s, p < 0.0001), while the MCV in six untreated patients did not change throughout hospitalization. The subjective symptoms assessed based on the total symptom score also significantly improved (15.6 ± 3.1 to 11.1 ± 2.2, p = 0.047). Although sensory nerve conduction velocity (SCV) of the sural nerve could not be detected in three patients at baseline, it was detected in two of the three patients after 14 days of ghrelin administration. Overall, SCV did not change significantly. Plasma glucose, but not serum C peptide, levels during a liquid meal tolerance test significantly improved after treatment. These results suggest that ghrelin may be a novel therapeutic option for DPN; however, a double-blind, placebo-controlled trial is needed in the future.


Mediators of Inflammation | 2018

Protective Effect of Sex Hormone-Binding Globulin against Metabolic Syndrome: In Vitro Evidence Showing Anti-Inflammatory and Lipolytic Effects on Adipocytes and Macrophages

Hiroki Yamazaki; Akifumi Kushiyama; Hideyuki Sakoda; Midori Fujishiro; Takeshi Yamamotoya; Yusuke Nakatsu; Takako Kikuchi; Sunao Kaneko; Hirotoshi Tanaka; Tomoichiro Asano

Sex hormone-binding globulin (SHBG) is a serum protein released mainly by the liver, and a low serum level correlates with a risk for metabolic syndrome including diabetes, obesity, and cardiovascular events. However, the underlying molecular mechanism(s) linking SHBG and metabolic syndrome remains unknown. In this study, using adipocytes and macrophages, we focused on the in vitro effects of SHBG on inflammation as well as lipid metabolism. Incubation with 20 nM SHBG markedly suppressed lipopolysaccharide- (LPS-) induced inflammatory cytokines, such as MCP-1, TNFα, and IL-6 in adipocytes and macrophages, along with phosphorylations of JNK and ERK. Anti-inflammatory effects were also observed in 3T3-L1 adipocytes cocultured with LPS-stimulated macrophages. In addition, SHBG treatment for 18 hrs or longer significantly induced the lipid degradation of differentiated 3T3-L1 cells, with alterations in its corresponding gene and protein levels. Notably, these effects of SHBG were not altered by coaddition of large amounts of testosterone or estradiol. In conclusion, SHBG suppresses inflammation and lipid accumulation in macrophages and adipocytes, which might be among the mechanisms underlying the protective effect of SHBG, that is, its actions which reduce the incidence of metabolic syndrome.


Scientific Reports | 2017

Trk-fused gene (TFG) regulates pancreatic β cell mass and insulin secretory activity

Takeshi Yamamotoya; Yusuke Nakatsu; Akifumi Kushiyama; Yasuka Matsunaga; Koji Ueda; Yuki Inoue; Masa-Ki Inoue; Hideyuki Sakoda; Midori Fujishiro; Hiraku Ono; Hiroshi Kiyonari; Hisamitsu Ishihara; Tomoichiro Asano

The Trk-fused gene (TFG) is reportedly involved in the process of COPII-mediated vesicle transport and missense mutations in TFG cause several neurodegenerative diseases including hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). The high coincidence ratio between HMSN-P and diabetes mellitus suggests TFG to have an important role(s) in glucose homeostasis. To examine this possibility, β-cell specific TFG knockout mice (βTFG KO) were generated. Interestingly, βTFG KO displayed marked glucose intolerance with reduced insulin secretion. Immunohistochemical analysis revealed smaller β-cell masses in βTFG KO than in controls, likely attributable to diminished β-cell proliferation. Consistently, β-cell expansion in response to a high-fat, high-sucrose (HFHS) diet was significantly impaired in βTFG KO. Furthermore, glucose-induced insulin secretion was also markedly impaired in islets isolated from βTFG KO. Electron microscopic observation revealed endoplasmic reticulum (ER) dilatation, suggestive of ER stress, and smaller insulin crystal diameters in β-cells of βTFG KO. Microarray gene expression analysis indicated downregulation of NF-E2 related factor 2 (Nrf2) and its downstream genes in TFG depleted islets. Collectively, TFG in pancreatic β-cells plays a vital role in maintaining both the mass and function of β-cells, and its dysfunction increases the tendency to develop glucose intolerance.


Biochemical and Biophysical Research Communications | 2015

One-day high-fat diet induces inflammation in the nodose ganglion and hypothalamus of mice

T.M. Zaved Waise; Koji Toshinai; Farhana Naznin; Cherl NamKoong; Abu Saleh Md Moin; Hideyuki Sakoda; Masamitsu Nakazato

Collaboration


Dive into the Hideyuki Sakoda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge