Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hideyuki Tomitori is active.

Publication


Featured researches published by Hideyuki Tomitori.


American Journal of Human Genetics | 2011

Excess of De Novo Deleterious Mutations in Genes Associated with Glutamatergic Systems in Nonsyndromic Intellectual Disability

Fadi F. Hamdan; Julie Gauthier; Yoichi Araki; Da-Ting Lin; Yuhki Yoshizawa; Kyohei Higashi; A-Reum Park; Dan Spiegelman; Amélie Piton; Hideyuki Tomitori; Hussein Daoud; Christine Massicotte; Edouard Henrion; Ousmane Diallo; Masoud Shekarabi; Claude Marineau; Michael Shevell; Bruno Maranda; Grant A. Mitchell; Amélie Nadeau; Guy D'Anjou; Michel Vanasse; Myriam Srour; Ronald G. Lafrenière; Pierre Drapeau; Jean Claude Lacaille; Eunjoon Kim; Jae-Ran Lee; Kazuei Igarashi; Richard L. Huganir

Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.


Stroke | 2005

Polyamine Oxidase and Acrolein as Novel Biochemical Markers for Diagnosis of Cerebral Stroke

Hideyuki Tomitori; Teruyoshi Usui; Naokatsu Saeki; Shiro Ueda; Hiroshi Kase; Kazuhiro Nishimura; Keiko Kashiwagi; Kazuei Igarashi

Background and Purpose— We found previously that plasma levels of acrolein (CH2=CHCHO) and spermine oxidase (SMO) were well correlated with the degree of severity of chronic renal failure. The aim of this study was to test whether the levels of these 2 markers and of acetylpolyamine oxidase (AcPAO) were increased in the plasma of stroke patients. Methods— The activity of AcPAO and SMO and the level of protein-conjugated acrolein in plasma of the stroke patients and normal subjects were measured by high-performance liquid chromatography and ELISA, respectively. Focal infarcts were estimated by MRI or computed tomography (CT). Results— The levels of AcPAO, SMO, and acrolein were significantly increased in the plasma of stroke patients. The size of stroke was nearly parallel with the multiplied value of acrolein and total polyamine oxidase (AcPAO plus SMO). After the onset of stroke, an increase in AcPAO first occurred, followed by increased levels of SMO and finally acrolein. In 1 case, an increase in AcPAO and SMO preceded focal damage as detected by MRI or CT. Furthermore, stroke was confirmed by MRI in a number of mildly symptomatic patients (11 cases) who had increased levels of total polyamine oxidase and acrolein. Among apparently normal subjects (8 cases) who had high values of acrolein×total polyamine oxidase, stroke was found in 4 cases by MRI. Conclusions— The results indicate that increased levels of AcPAO, SMO, and acrolein are good markers of stroke.


Biochemical Journal | 2001

Multiple polyamine transport systems on the vacuolar membrane in yeast

Hideyuki Tomitori; Keiko Kashiwagi; Tomoko Asakawa; Yoshimi Kakinuma; Anthony J. Michael; Kazuei Igarashi

We recently identified a gene (TPO1, YLL028w) that encodes a polyamine transport protein on the vacuolar membrane in yeast [Tomitori, Kashiwagi, Sakata, Kakinuma and Igarashi (1999) J. Biol. Chem. 274, 3265-3267]. Because the existence of one or more other genes for a polyamine transport protein on the vacuolar membrane was expected, we searched sequence databases for homologues of the protein encoded by TPO1. Membrane proteins encoded by the open reading frames YGR138c (TPO2), YPR156c (TPO3) and YOR273c (TPO4) were postulated to be polyamine transporters and, indeed, were subsequently shown to be polyamine transport proteins on the vacuolar membrane. Cells overexpressing these genes were resistant to polyamine toxicity and showed an increase in polyamine uptake activity and polyamine content in vacuoles. Furthermore, cells in which these genes were disrupted showed an increased sensitivity to polyamine toxicity and a decrease in polyamine uptake activity and polyamine content in vacuoles. Resistance to polyamine toxicity in cells overexpressing the genes was overcome by bafilomycin A(1), an inhibitor of the vacuolar H(+)-ATPase. Among the four polyamine transporters, those encoded by TPO2 and TPO3 were specific for spermine, whereas those encoded by TPO1 and TPO4 recognized spermidine and spermine. These results suggest that polyamine content in the cytoplasm of yeast is elaborately regulated by several polyamine transport systems in vacuoles. Furthermore, it was shown that Glu-207, Glu-324 (or Glu-323) and Glu-574 of TPO1 protein were important for the transport activity.


Journal of Biological Chemistry | 1999

Identification of a gene for a polyamine transport protein in yeast.

Hideyuki Tomitori; Keiko Kashiwagi; Kaori Sakata; Yoshimi Kakinuma; Kazuei Igarashi

Properties of a membrane protein encoded byYLL028w were examined using yeast cells transformed with the gene. The transformed cells became resistant to polyamine toxicity, and the resistance was overcome by bafilomycin A1, an inhibitor of vacuolar H+-ATPase. Although spermine uptake activity of the transformed cells was almost the same as that of wild type cells, the uptake activity of vacuolar membrane vesicles from the transformed cells was higher than that from wild type cells. The transformed cells became resistant to MGBG (methylglyoxal bis(guanylhydrazone)) and paraquat, but not Ni2+ and Co2+, suggesting that the protein encoded byYLL028w is a transport protein specific for polyamines. When the YLL028w gene was disrupted by inserting theHIS3 gene, the cells became sensitive to polyamines, and spermine uptake activity of the vacuolar membrane vesicles decreased significantly. The accumulated spermine in YLL028wgene-disrupted cells decreased greatly compared with that in wild type cells. The results indicate that a membrane protein encoded byYLL028w (TPO1) is a polyamine transport protein on the vacuolar membrane.


Biochemical and Biophysical Research Communications | 2009

Acrolein toxicity: Comparison with reactive oxygen species.

Madoka Yoshida; Hideyuki Tomitori; Yoshiki Machi; Motofumi Hagihara; Kyohei Higashi; Hitomi Goda; Takeshi Ohya; Masaru Niitsu; Keiko Kashiwagi; Kazuei Igarashi

The toxicity of acrolein was compared with that of reactive oxygen species using a mouse mammary carcinoma FM3A cell culture system. Complete inhibition of cell growth was accomplished with 10 microM acrolein, 100 microM H(2)O(2), and 20 microM H(2)O(2) plus 1mM vitamin C, which produce ()OH, suggesting that toxicity of acrolein is more severe than H(2)O(2) and nearly equal to that of ()OH, when these compounds were added extracellularly. Acrolein toxicity was prevented by N-acetyl-l-cysteine and N-benzylhydroxylamine, and attenuated by putrescine and spermidine. Toxicity of H(2)O(2) was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase, and reduced by polyphenol, and toxicity of ()OH was prevented by glutathione peroxidase plus N-acetyl-l-cysteine, pyruvate, catalase and reduced by N-acetyl-l-cysteine. The results indicate that prevention of cell toxicity by N-acetyl-l-cysteine was more effective with acrolein than with ()OH. Protein and DNA synthesis was damaged primarily by acrolein and reactive oxygen species, respectively.


Journal of Biological Chemistry | 1997

Excretion and uptake of putrescine by the PotE protein in Escherichia coli.

Keiko Kashiwagi; Sanae Shibuya; Hideyuki Tomitori; Aiko Kuraishi; Kazuei Igarashi

The structure and function of the polyamine transport protein PotE was studied. Uptake of putrescine by PotE was dependent on the membrane potential. In contrast, the putrescine-ornithine antiporter activity of PotE studied with inside-out membrane vesicles was not dependent on the membrane potential (Kashiwagi, K., Miyamoto, S., Suzuki, F., Kobayashi, H., and Igarashi, K. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 4529-4533). The Km values for putrescine uptake and for putrescine-ornithine antiporter activity were 1.8 and 73 μM, respectively. Uptake of putrescine was inhibited by high concentrations of ornithine. This effect of ornithine appears to be due to putrescine-ornithine antiporter activity because it occurs only after accumulation of putrescine within cells and because ornithine causes excretion of putrescine. Thus, PotE can function not only as a putrescine-ornithine antiporter to excrete putrescine but also as a putrescine uptake protein. Both the NH2 and COOH termini of PotE were located in the cytoplasm, as determined by the activation of alkaline phosphatase and β-galactosidase by various PotE-fusion proteins. The activities of putrescine uptake and excretion were studied using mutated PotE proteins. It was found that glutamic acid 207 was essential for both the uptake and excretion of putrescine by the PotE protein and that glutamic acids 77 and 433 were also involved in both activities. These three glutamic acids are located on the cytoplasmic side of PotE, and the function of these three residues could not be replaced by other amino acids. Putrescine transport activities did not change significantly with mutations at the other 13 glutamic acid or aspartic acid residues in PotE.


Journal of Biological Chemistry | 1998

Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. Structural basis for substrate specificity.

Dmitry G. Vassylyev; Hideyuki Tomitori; Keiko Kashiwagi; Kosuke Morikawa; Kazuei Igarashi

PotF protein is a periplasmic substrate-binding protein of the putrescine transport system in Escherichia coli. We have determined the crystal structure of PotF protein in complex with the substrate at 2.3-Å resolution. The PotF molecule has dimensions of 54 × 42 × 30 Å and consists of two similar globular domains. The PotF structure is reminiscent of other periplasmic receptors with a highest structural homology to another polyamine-binding protein, PotD. Putrescine is tightly bound in the deep cleft between the two domains of PotF through 12 hydrogen bonds and 36 van der Waals interactions. The comparison of the PotF structure with that of PotD provides the insight into the differences in the specificity between the two proteins. The PotF structure, in combination with the mutational analysis, revealed the residues crucial for putrescine binding (Trp-37, Ser-85, Glu-185, Trp-244, Asp-247, and Asp-278) and the importance of water molecules for putrescine recognition.


Journal of Neurochemistry | 2008

Binding of spermine and ifenprodil to a purified, soluble regulatory domain of the N-methyl-d-aspartate receptor

Xia Han; Hideyuki Tomitori; Satomi Mizuno; Kyohei Higashi; Christine Füll; Tomohide Fukiwake; Yusuke Terui; Pathama Leewanich; Kazuhiro Nishimura; Toshihiko Toida; Keith Williams; Keiko Kashiwagi; Kazuei Igarashi

The binding of spermine and ifenprodil to the amino terminal regulatory (R) domain of the N‐methyl‐D‐aspartate receptor was studied using purified regulatory domains of the NR1, NR2A and NR2B subunits, termed NR1‐R, NR2A‐R and NR2B‐R. The R domains were over‐expressed in Escherichia coli and purified to near homogeneity. The Kd values for binding of [14C]spermine to NR1‐R, NR2A‐R and NR2B‐R were 19, 140, and 33 μM, respectively. [3H]Ifenprodil bound to NR1‐R (Kd, 0.18 μM) and NR2B‐R (Kd, 0.21 μM), but not to NR2A‐R at the concentrations tested (0.1–0.8 μM). These Kd values were confirmed by circular dichroism measurements. The Kd values reflected their effective concentrations at intact NR1/NR2A and NR1/NR2B receptors. The results suggest that effects of spermine and ifenprodil on NMDA receptors occur through binding to the regulatory domains of the NR1, NR2A and NR2B subunits. The binding capacity of spermine or ifenprodil to a mixture of NR1‐R and NR2A‐R or NR1‐R and NR2B‐R was additive with that of each individual R domain. Binding of spermine to NR1‐R and NR2B‐R was not inhibited by ifenprodil and vice versa, indicating that the binding sites for spermine and ifenprodil on NR1‐R and NR2B‐R are distinct.


Atherosclerosis | 2010

Correlation between images of silent brain infarction, carotid atherosclerosis and white matter hyperintensity, and plasma levels of acrolein, IL-6 and CRP

Madoka Yoshida; Kyohei Higashi; Eiichi Kobayashi; Naokatsu Saeki; Kenji Wakui; Tadafumi Kusaka; Hirotaka Takizawa; Koichi Kashiwado; Norikazu Suzuki; Kazumasa Fukuda; Takao Nakamura; Sakae Watanabe; Kei Tada; Yoshiki Machi; Mutsumi Mizoi; Toshihiko Toida; Tetsuto Kanzaki; Hideyuki Tomitori; Keiko Kashiwagi; Kazuei Igarashi

OBJECTIVE We found previously that the measurement of plasma levels of protein-conjugated acrolein (PC-Acro) together with IL-6 and CRP can be used to identify silent brain infarction (SBI) with high sensitivity and specificity. The aim of this study was to clarify how three biochemical markers are correlated to SBI, carotid atherosclerosis (CA) and white matter hyperintensity (WMH). METHODS The levels of PC-Acro, IL-6 and CRP in plasma were measured by ELISA. SBI and WMH were evaluated by MRI, and CA was evaluated by duplex carotid ultrasonography. RESULTS A total of 790 apparently healthy volunteers were classified into 260 control, 214 SBI, 263 CA and 245 WMH subjects, which included 187 subjects with two or three pathologies. When the combined measurements of PC-Acro, IL-6 and CRP were evaluated together with age, using a receiver operating characteristic curve and artificial neural networks, the relative risk value (RRV), an indicator of tissue damage, was in the order SBI with CA (0.90)>SBI (0.80)>CA (0.76)>WMH with CA (0.65)>WMH (0.46)>control (0.14). RRV was also correlated with severity in each group of SBI, CA and WMH. CONCLUSION The RRV supports the idea that the degree of risk to develop a stroke is in the order SBI>CA>WMH.


Atherosclerosis | 2009

Acrolein, IL-6 and CRP as markers of silent brain infarction

Madoka Yoshida; Hideyuki Tomitori; Yoshiki Machi; Daisuke Katagiri; Shiro Ueda; Kentaro Horiguchi; Eiichi Kobayashi; Naokatsu Saeki; Kazuhiro Nishimura; Itsuko Ishii; Keiko Kashiwagi; Kazuei Igarashi

We found previously that increased levels of polyamine oxidase (PAO) [acetylpolyamine oxidase (AcPAO) plus spermine oxidase (SMO)], and acrolein (CH(2)CHCHO) are good markers of stroke. We then investigated whether silent brain infarction (SBI) can be detected by measuring acrolein, PAO, or other biomarkers. Several biomarkers were measured in the plasma of 53 normal subjects and 44 subjects with SBI. It was found that the levels of protein-conjugated acrolein (PC-Acro), interleukin-6 (IL-6) and C-reactive protein (CRP) were significantly higher in SBI than in normal subjects. PAO was slightly higher in SBI than in normal subjects. Since the probability of SBI was increased with age, values were analyzed including age as a factor. When the combined measurements of PC-Acro, IL-6 and CRP were evaluated together with age using a receiver operating characteristic curve, SBI was indicated with 89% sensitivity and 91% specificity. The results indicate that measurement of PC-Acro together with IL-6 and CRP makes it possible to identify SBI with high sensitivity and specificity.

Collaboration


Dive into the Hideyuki Tomitori's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiko Kashiwagi

Chiba Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yusuke Terui

Chiba Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiko Sakamoto

Chiba Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge